• Title/Summary/Keyword: Strength softening

Search Result 318, Processing Time 0.021 seconds

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom;Amirhosein Abna;Hossein Karimpour;Mohammad Akbari-Jamkarani
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.495-511
    • /
    • 2023
  • In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.

Effect of Tempering Treatment on Mechanical Properties of Ausformed Martensite in Fe-30% Ni-0.35%C Alloy (Fe-30%Ni-0.35%C 합금에서 Ausformed Martensite의 기계적 성질에 미치는 Tempering처리의 영향)

  • Lee, E.K.;Lee, K.B.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.44-52
    • /
    • 1994
  • In order to investigate the effect of tempring treatment on the mechanical properties of ausformed martensite in Fe-30%Ni-0.35%C alloy, the hardness, yield strength and elongation were examined by tensile test. 1. The strength of deformed austenite in Fe-30%Ni-0.35%C alloy was increased due to the work hardening induced from the dislocation density increased during deformation. The strength of ausformed martensite was increased because of defects inherited from deformed austenite by martensitic transformation. 2. The ductility of ausformed martensite was shown a nearly constant values independent of deformation degrees because of the interaction of multiple factors such as increased retained austenite, formation of void and decrement of twin in ausformed martensite. 3. The strength of ausformed martensite by tempering treatment was shown a little decrement up to $340^{\circ}C$, especially showed remarkable softening resistance in higher deformation degrees. 4. Virgin martensite and ausformed martensite were shown a maximum yield strength by clustering in tempering at $100^{\circ}C$ and above $100^{\circ}C$, yield strength was very small decreased due to the decrement of solute carbon by the destruction of clustering. 5. The decomposition of retained austenite was not shown up to $450^{\circ}C$ in ausformed martensite with tempering treatment, and the matrix was rapidly softening because of the decomposition of martensite and the formation of reversed austenite with tempering above $400^{\circ}C$.

  • PDF

Shear Strength Property of Wood Treated by Steam Treatment at High Temperature (고온수증기처리 목재의 전단강도 특성)

  • Kim, Jung-Hwan;Lee, Weon-Hee;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.9-15
    • /
    • 2001
  • This study deals with shear strength test for Pinus densiflora and Pinus radiata treated at above $100^{\circ}C$ by heat steam. Treatment conditions of this experiment were operated at regular intervals of $20^{\circ}C$ at temperatures up to $200^{\circ}C$ for 5, 10, 20 and 30 minutes by using the steam-explosion apparatus. It was examined, at high temperatures, degradation of some compounds from wood composition could lead to reduced the shear strength through heat steaming processes and play a large part in the plastic process of solid wood materials. It could be estimated that the shear strength of woods were gradually reduced by heat steaming time. Remarkable reduction of shear strength of woods was observed with increasing steaming temperatures above 10 minutes steaming time. Furthermore, this phenomenon shows a tendency to increase with higher temperatures. Therefore, it was considered that the softening by steaming treatment at high temperatures is necessary for the improvement on the wood processing ability.

  • PDF

Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.458-466
    • /
    • 2020
  • The purpose of this experimental research is to evaluate the compressive and tensile behaviors of high performance hybrid fiber reinforced concrete(HPHFRC) using amorphous steel fiber(ASF) and polyamide fiber(PAF). For this purpose, the HPHFRCs using ASF and PAF were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively. And then the compressive and tensile behaviors such as the compressive strength, compressive toughness, direct tensile strength, and stress-strain characteristics under compressive and tensile tests were estimated. It was observed from the test results that the compressive strength of HPHFRC was slightly decreased than that of plain concrete, but the compressive toughness, compressive toughness ratio, and direct tensile strength of HPHFRC increased significantly. Also, it was revealed that the plain concrete showed brittle fracture after the maximum stress from the stress-strain curves, but HPHFRC showed strain softening.

Analytical Model for Shear Strength of RS Hybrid Steel Beams with Reinforced Concrete Ends (단부 RC조와 중앙부 철골조로 이루어진 RS 보의 전단강도예측을 위한 해석모델)

  • 김욱종;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.602-609
    • /
    • 2001
  • A strut-and-tie model was proposed to predict the shear strength of RS beam which is a hybrid steel beam with reinforced concrete ends. The proposed model is capable of considering the concrete softening effects due to diagonal shear cracks at the embedded area of steel in concrete. It can predict tile failure strength of RS beam from the mathematical formulations which are based on equilibrium, compatibility, and the constitutive laws of cracked reinforced concrete. The previous experimental results of 15 RS beams were analyzed with the proposed model and the analytical results were also compared with formulas currently available. The comparison revealed that the proposed model can predict the strength of RS beam better than the others. The average ratio of experimental strengths to analytical results was 1.02 and the standard deviation was 0.126.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

A Study on the Preparation of Durable Softening Water Repellents by Blends of Fatty Carbamide/Wax/Acrylic Copolymer(IV);Water Repelling Treatment of P/C Blended Fabrics (지방산 카르바미드/왁스/아크릴 공중합체의 블렌드에 의한 내구유연발수제의 제조에 관한 연구 (IV);P/C 혼방직물에의 발수처리)

  • Park, Hong-Soo;Bae, Jang-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.51-58
    • /
    • 1995
  • To prepare a durable softening water repellent, quaternized octadecyl methacrylate-2-diethyl-aminoethyl methacrylate as a mother resin and quaternized 1, 3-dioctadecyl-2, 7-dioxy-6, 8-di(2-hydroxyethyl)-1, 3, 6, 8-tetraazacyclodecane which increase the softening effect and the hydrostatic pressure blended with waxes and their emulsifier in various proportions to give water repellent PADWC. As the results of the measurement of water repellency, washable, tear strength and crease recovery to polyestercotton(P/C) blended fabrics treated with PADWC only or addition of textile finishing resin, the physical properties were increased. There was no significant lowering effect in water repellency when PADWC was treated the antistatic agent by the one-bath method, and the effect of water repellency by the adding the catalyst was studied. PADWC was confirmed as durable water repellent with the results of making little difference of water repellency as ${\pm}5$ point after and before washing.

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (I) - Monotonic and Cyclic Behavior - (냉간 가공된 316L 스테인리스강의 저주기 피로 거동에 미치는 온도의 영향 (I) - 인장 및 반복 거동 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.333-342
    • /
    • 2004
  • Tensile and low cycle fatigue (LCF) tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650$^{\circ}C$. At all test temperatures, cold worked material showed the tendency of higher strength and lower ductility compared with those of solution treated material. The embrittlement of material occurred in the temperature region from 300$^{\circ}C$ to 600$^{\circ}C$ due to dynamic strain aging. Following initial cyclic hardening for a few cycles, cycling softening was observed to dominate until failure occurred during LCF deformation, and the cyclic softening behavior strongly depended on temperature and strain amplitude. Non-Masing behavior was observed at all test temperatures and hysteresis energy curve method was employed to describe the stress-strain hysteresis loops at half$.$life. The prediction shows a good agreement with the experimental results.

Fracture Analysis of Concrete Structures using Boundary Element Method (경계요소법에 의한 콘크리트 구조물의 진행성 파괴해석)

  • 송하원;전재홍
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.127-134
    • /
    • 1996
  • This paper is about a progressive fracture analysis of concrete by boundary element method. From both displacement boundary integral equation and traction boundary integral equation of solids with cracks, a boundary integral equation for crack problem is derived. For the analysis of progressive fracture of concrete, fracture process zone is modelled based on Dugdale-Barenblatt model with linear tension-softening curve. By using the boundary element modeling, the progressive fractures of concrete beam and compact-tension specimens with various loading conditions are analyzed and compared with experiments. The analysis results show that the technique in this paper can predict the maximum strength and the nonlinear behavior of concrete including post-peak behavior.

  • PDF

A Chemometric Aided UV/Vis Spectroscopic Method for Kinetic Study of Additive Adsorption in Cellulose Fibers

  • Chal, Xin-Sheng;Zhou, Jinghong;Zhu, Hongxiang;Huang, Xiannan
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.137-140
    • /
    • 2006
  • This paper describes a technique combining chemometrics with UV spectroscopy for the determination of the concentra tions of two tissue additives (i.e., wet strength and softening agents) in a cellulose fiber containing solution. In single as ent solutions, the concentration of the additive can be measured by UV spectroscopy at the wavelength where the species having absorption. For a binary (i.e., containing two additives) solution system, the spectral characterization is very complicated. However, if aided by a chemometrical calibration technique, each additive in the binary solution can be quantified simultaneously. The present method is very rapid and simple, it can easily perform a continuous measurement in the changes in the additives' concentration after fiber addition, and therefore this becomes a valuable tool for the adsorption kinetics study of chemical additives onto the cellulose fibers. The time-dependent adsorption behaviors of the wet-strength, softening agent, and their both on fiber were also presented.

  • PDF