• Title/Summary/Keyword: Strength retention

Search Result 384, Processing Time 0.029 seconds

Albumin-Crosslinked PVP Hydrogel as a Gastric Retention Platform (위내체류를 목적으로 한 알부민 가교 PVP 하이드로겔의 팽윤특성)

  • Shim, Chang-Koo;Yeo, So-Hyeon
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 1993
  • Retaining a drug in the stomach by some means is sometimes necessary to extend the G1 absorption time of the drug more than 6-8 hrs. Hydrogel has often been examined for its feasibility as a dosage form, so called platform, that could be retained in the stomach due to its excellent swelling properties in the gastric fluid. In this study, polyvinylpyrrolidone (PVP) hydrogel crosslinked by albumin or acrylated albumin was synthesized in a tablet form and evaluated for its possibility as the platform. The synthesis of the hydrogel was performed by $^{60}Co\;{\gamma}-ray$ irradiation of N-vinyl-2-pyrrolidone (monomer) in the presence of a crosslinking agent: aqueous solution of albumin or acrylated albumin. Synthetic conditions such as radiation dose, dose rate and concentration of crosslinking agent were varied in order to optimize the swelling and mechanical properties of the hydrogels. Degree of swelling of albumin-crosslinked PVP (Al-PVP) was highly dependent on radiation dose, dose rate and albumin concentration: it was decreased as they increased. On the other hand, that of acrylated albumin-crosslinked PVP (Acryl-PVP) was almost independent on them except dose rate: it was decreased as the radiation dose rate increased. The compressive strength of the two hydrogels was decreased as the dose rate increased. Digestion of both PVP in artificial gastric fluid containing pepsin was delayed by the ${\gamma}-ray$ irradiation. In conclusion, Al-PVP and Acry-PVP with diverse swelling and mechanical properties could be obtained by controlling synthetic conditions, mainly the irradiation dose rate.

  • PDF

Separation of Functionalized Heterocyclic Compounds by High Performance Liquid Chromatography(I) (고성능 액체 크로마토그래피에 의한 기능성 헤테로고리화합물의 분리(I))

  • Lee, Kwang-PilI;Cho, Yun Jin;Lee, Young Cheol
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.408-417
    • /
    • 1997
  • Normal phase or reversed phase liquid chromatographic separation of some structural isomers of functionalized heterocyclic compounds has been carried out by using several different columns and various mobile phases. The optimal experimental conditions for separation of structural isomers were found on a ternary solvent system including alcohol as a modifier. This polar modifier is preferentially adsorbed onto strong adsorption site, leaving a more uniform population of weaker site that then serve to retain the sample. This 'deactivation' of the adsorbent leads to a number of improvements in subsequent separations. The optimal mobile phase system of separation were found on normal phase on structural isomers. Retention mechanism of normal phase system was also studied depending on adsorption strength between solute and stationary phase of column. However, retention factors of reversed phase system were found on hydrophobic interaction with solvophobic effect.

  • PDF

The Numerical Analysis of Extrusion Forming on the Manufactured Artificial Lightweight Aggregate Made of Incinerated Sewage Sludge Ash by a Finite Element Method (유한요소법을 이용한 하수슬러지 소각재의 인공경량골재 제조시 압출성형해석)

  • Jung, Byung-Gil;Bae, Jin-Woo;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1169-1177
    • /
    • 2007
  • The main objective of this research was to evaluate the effects of process variables which were forming ability, flow displacement, effective stress, effective strain, fluid vector and products defects on manufactured artificial lightweight aggregate made of both incinerated sewage sludge ash and clay by means of the numerical analysis of a rigid-plastic finite element method. CATIA (3D CAD program) was used for an extrusion metal mold design that was widely used in designing aircraft, automobile and metallic molds. A metal forming analysis program (ATES Co.) had a function of a rigid-plastic finite element method was used to analyze the program. The result of extrusion forming analysis indicated clearly that a shape retention of the manufactured artificial light-weight aggregate could be maintained by increasing the extrusion ratio (increasing compressive strength inside of extrusion die) and decreasing the die angle. The stress concentration of metal mold was increased by increasing an extrusion ratio, and it was higher in a junction of punch and materials, friction parts between a bottom of the punch and inside of a container, a place of die angle and a place of die of metal mold. Therefore, a heat treatment as well as a rounding treatment for stress distribution in the higher stress concentration regions were necessary to extend a lifetime of the metallic mold. A deformity of the products could have made from several factors which were a surface crack, a lack of the shape retention and a crack of inside of the products. Specially, the surface crack in the products was the most notably affected by the extrusion ratio.

Assessment of Resistance to Application Environment of Geotextile Composites (복합형 지오텍스타일의 적용환경에 대한 저항성 평가)

  • Jeon, Han-Yong;Lyoo, Won-Seok;Ghim, Han-Do;Chung, Chin-Gyo;Cho, Bong-Gyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.25-38
    • /
    • 2003
  • Geotextile composites to improve the resistance to the application environment were manufactured of recycled polyester geotextile with carbon black as ultraviolet stabilizer and polypropylene geotextile by needle-punching method. Mechanical properties, ultraviolet resistance and chemical stability were evaluated. Retention ratio of tensile properties of polypropylene geotextiles were decreased about 50% with the exposed condition by ultraviolet but those of geotextile composites showed the slightly decrease. Geotextile composites which have larger weights of recycled polyester geotextile were more stable against ultraviolet. For chemical stability, the changes of tensile strength values of geotextile composites were in the range of -20~+10% at the various chemical conditions.

  • PDF

Characteristics of Quasi-MFISFET Device Considering Leakage Current (누설전류를 고려한 Quasi-MFISFET 소자의 특성)

  • Chung, Yeun-Gun;Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1717-1723
    • /
    • 2007
  • In this study , quasi-MFISFET (Metal-Ferroelectric-Insulator-Semiconductor FET) devices are fabricated using PLZT(10/30/70), PLT(10), PZT(30/70) thin film and their drain current properties are investigated. It is found that the drain current of quasi-MFISFET is directly influenced by the polarization strength of ferroelectric thin fan. Also, when the gate voltages are ${\pm}5\;and\;{\pm}10V$, the memory windows are 0.5 and 1.3V, respectively. It means that the memory window is changed with the variation of coercive voltage generated by the voltage applied on ferroelectric thin film. The electric field and the leakage current with time delay of PLZT(10/30/70) thin lam are measured to investigate the retention property of MFISFET device. Some material parameters such as current density constant, $J_{ETO}$, electric field dependent factor K and time dependent factor m are obtained. The variation of charge density with time is quantitatively analyzed by using the material parameters.

Evaluation on Flexural Performance of Steel Plate Reinforced GLT Beams (강판 보강 집성재 보의 휨성능 평가 연구)

  • Park, Keum-Sung;Lee, Sang-Sup;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.39-49
    • /
    • 2020
  • In this study, we will develop a hybrid cross-sectional shape of steel inserted type glued-laminated timber that can improve the strength of structural glued-laminated timber and maximize the ductility by using steel plate with excellent tensile and deformation ability. A total of three specimens were fabricated and the flexural performance test was carried out to evaluate the structural performance of the steel inserted type glued-laminated timber. In order to compare the effect of steel inserted glued-laminated timber, one structural glued-laminated timber test specimen composed of pure wood was manufactured. In addition, in order to evaluate the adhesion performance of the steel inserted, one each of a screw joint test specimen and a polyurethane joint test specimen was prepared. As a result, all the specimens showed the initial crack in the finger joint near the force point. This has been shown to be a cause of crack diffusion and strength degradation. The use of finger joints in the maximum moment section is considered to affect the strength and ductility of the glued-laminated timber beam. Polyurethane-adhesive steel inserted glued-laminated timber showed fully-composite behavior with little horizontal separation between the steel plate and glued-laminated timber until the maximum load was reached. This method has been shown to exhibit sufficient retention bending performance.

Hair-dyeing by using Pomegranate Hull Extract (석류 과피 추출물을 이용한 모발염색)

  • Cho, A-Rang;Shin, Youn-Sook;Yoo, Dong-Il
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.42-50
    • /
    • 2008
  • The objective of this study is to investigate the efficacy of pomegranate hull colorant as a natural hair coloring dye. The extract of pomegranate hull was concentrated and freeze-dried to get colorant powder. Effect of dyeing condition and mordanting on the dye uptake of hair by using Al, Fe, Cu, Cr, Sn compounds, color change and colorfastness were explored. In addition, tensile strength was measured and the surface of the hair was observed. Dye uptake of hair measured by K/S value (400 nm) indicated that ionic bonding seems to be involved in the sorption of pomegranate colorant to hair. Maximum sorption was obtained at pH 3.5 and the concentration of 50% (on the weight of hair, o.w.h.). Acidic dyeing condition (pH $3.5{\sim}5.0$) showed yellow color however alkaline dyeing condition (pH $7{\sim}11$) gave reddish yellow color. Pomegranate hull colorant produced greyish brown color on hair and the hair mordanted with Fe showed dark brown color. Mordants except Fe did not increase dye uptake significantly. Mordants except Cu increased light fastness and mordants except Cr increased washing fastness level slightly. According to SEM observation and the tensile strength retention measurement, the mordant dyed hair gave more damage to hair by ultraviolet light and washing than the hair dyed without mordanting. Experimental results of K/S value and colorfastness(light and washing) supported that pomegranate hull colorant without mordanting can be used as a semi-permanent natural hair coloring dye.

Evaluation of the Septic Tank Performance in the Sewage Treatment Area and Suggestion of an Optimum Model (하수처리구역내 단독정화조의 성능평가 및 최적 모형의 제안)

  • Lim, Bong-Su;Jung, Keum-Hee;Wang, Ze-Jie
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.403-409
    • /
    • 2007
  • This study was carried out to recommend the systematic improving practice for the effective operation of septic tank, and the evaluation of its BOD and nutrient removal efficiency depending on process, the survey of characteristics of FRP material, and the suggestion of optimum septic tank model within sewage treatment area. The average BOD concentration and BOD removal efficiency of septic tank which was carried out the cleaning periodically in 63.9 mg/L and 77.8%, shows good quality better than the septic tank which was not carried out the cleaning regularly. Maximum load of tensile, flexural and compressive strength increased in proportion to its thickness, and the contents standard 25% of glass fiber required upgrade over than 30%. Configuration and performance for the optimum of the septic tank suggests that over $0.75m^3$ of the effective total volume, adding to over $0.25m^3$ a man for more than 5 men of the treated person, retention time should be within one day. Improving plans about facility and materials quality of the septic tank have an obligation that protective wall ought to install on the concrete bottom and side faces to prevent crumble or transform from loading of the ground or upper part of the structure on the tank setting. And it is eliminated the uneffective resisting pressure and it keeps off circulate imperfect products by strengthening of the test methods such as stretching strength, pressing strength, glass fiber contents and thickness.

Study of structural properties and development of high strength Cured-In-Place Pipe (CIPP) liner for sewer pipes using glass fiber (유리섬유를 이용한 하수관의 고강도 현장경화 비굴착 보수 공법 재료의 개발 및 물성 특성 연구)

  • Ji, Hyon Wook;Koo, Dan Daehyun;Yoo, Sung Soo;Kang, Jeong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.149-159
    • /
    • 2020
  • Cured-in-place-pipe(CIPP) is the most adopted trenchless application for sewer rehabilitation to extend the life of the existing sewer without compromising both direct construction and indirect social costs especially applied in the congested urban area. This technology is globally and domestically known to be the most suitable for partial and full deteriorated pipe structure rehabilitation in a sewer system. The typical design of CIPP requires a significant thickness of lining to support loading causing sewage flow interruption and increasing material cost. This paper presents development of a high strength glass fiber composite lining material for the CIPP application and structural test results. The test results exhibit that the new glass fiber composite lining material has 12 times of flexural strength, 6.2 times of flexural modulus, and 0.5 Creep Retention Factor. These test results can reduce lining design thickness 35% at minimum. Even though taking into consideration extra materials such as outer and inner films for actual field applications, the structural capacity of the composite material significantly increases and it reduces 20 percent or more line thickness as compared to the conventional CIPP. We expect that the newly developed CIPP lining material lowers material costs and minimizes flow capacity reduction, and fully replaceable to the conventional CIPP lining materials.

The Synthesis of Diphenyl ethanolamidophosphate (DPEAP) and the Flame Retardancy of Cotton Fabric (Diphenyl ethanolamidophosphate의 합성과 면섬유에 대한 방염성)

  • Huh, Man Woo;Yoon, Jong Ho;Cho, Yong Suk;Kim, Young Suk;Lim, Hak Sang
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.25-34
    • /
    • 1996
  • Diphenyl ethanolamidophosphate(DPEAD) was synthesized for the purpose of developing a new flame retardant for cotton fabric. As the intermediate material was used diphenyl chlorophosphate(DPCP) and it was synthesized by using phosphorus oxychloride and phenol as the starting materials. The final product DPEAP was obtained by the reaction of DPCP and ethanolamine. The flame retardancy of cotton fabrics treated by DPEAP through pad-dry-cure(PDC) process was examined at various conditions. The physical property change of the DPEAP treated cotton fabrics were investigated by examining the drape stiffness, the wrinkle recovery, and the tensile strength. The results are summarized as follows: (1) DPEAP has shown excellent flame retardancy on cotton fabrics in comparison to other flame retardants for cotton fabrics available commercially. (2) The optimal condition for PDC process found was that the curing temperature was 16$0^{\circ}C$, the DPEAP concentration was 10%, the catalyst $({NH_{4})_{2}HPO_{4}$ concentration was 7.0%, and the fixing agent hexamethylol melamine (HMM)/DPEAP weight ratio was 1/8. (3) The wrinkle recovery of the processed fabrics increased with increasing DPEAP concentration. (4) The drape stiffness of the cotton fabrics treated by DPEAP have shown essentially no change until increasing DPEAP concentration to 15 %, however DPEAP concentration exceeds 20% the drape stiffness increased drastically with increasing DPEAP concentration. When DPEAP concentration is kept constant the drape stiffness increased with increasing $({NH_{4})_{2}HPO_{4}$ concentration and HMM/DPEAP weight ratio. (5) The tensile strength of the processed fabrics was lower than that of untreated fabrics, but the tensile strength retention increased with increasing DPEAP concentration.

  • PDF