• Title/Summary/Keyword: Strength retention

Search Result 384, Processing Time 0.026 seconds

Adsorption Kinetics for Polymeric Additives in Papermaking Aqueous Fibrous Media by UV Spectroscopic Analysis

  • Yoon, Sung-Hoon;Chai, Xin-Sheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1819-1824
    • /
    • 2006
  • The general objective of the present study was to investigate the potential application of the UV spectroscopic method for determination of the polymeric additives present in papermaking fibrous stock solutions. The study also intended to establish the surface-chemical retention model associated with the adsorption kinetics of additives on fiber surfaces. Polyamide epichlorohydrin (PAE) wet strength resin and imidazolinium quaternary (IZQ) softening agents were selected to evaluate the analytical method. Concentrations of PAE and IZQ in solution were proportional to the UV absorption at 314 and 400 nm, respectively. The time-dependent behavior of polymeric additives obeyed a mono-molecular layer adsorption as characterized in Langmuir-type expression. The kinetic modeling for polymeric adsorption on fiber surfaces was based on a concept that polymeric adsorption on fiber surfaces has two distinguishable stages including initial dynamic adsorption phase and the final near-equilibrium state. The simulation model predicted not only the real-time additive adsorption behavior for polymeric additives at high accuracy once the kinetic parameters were determined, but showed a good agreement with the experimental data. The spectroscopic method examined on the PAE and IZQ adsorption study could potentially be considered as an effective tool for the wet-end retention control as applied to the paper industry.

Effects of PCC Loading at Thick Stock on the Paper Properties (고농도 지료에서의 PCC 충전이 종이 물성에 미치는 영향)

  • Won, Jong-Myoung;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.62-68
    • /
    • 2012
  • This study was carried out to evaluate the effect of PCC loading at thick stock on the physical properties of paper. The effect of starch addition(2, 4 and 6%) and mixing time(5, 10 and 20 min.) on the filler retention and paper properties were investigated. Optimum dosage of cationic starch as a fixing agent was 4%, and mixing time did not showed any significant effect on the filler retention. PCC loading at thick stock was more effective to improve bulk and opacity than PCC loading at thin stock, although their improvement was not so significant. It was also found that the strength properties could be improved by the loading at thick stock. PCC loading method at thick stock could be considered as one of potential approaches for further improving of paper properties, although further research works are required in order to apply the PCC loading at thick stock in the paper mill.

Effect of Ultra Fine Precipitated Calcium Carbonate on the Quality of Coated Paper (초미립 경질탄산칼슘이 도공지 품질에 미치는 영향)

  • Kim, Sun-Kyung;Won, Jong-Myoung;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.91-98
    • /
    • 2012
  • This study was carried out in order to evaluate the effects of ultra fine precipitated calcium carbonate (UFPCC) on properties of coating color, coated paper and off-set printability. It was found that blending of UFPCC increased the low-shear viscosity and water retention of coating color. The smaller the particle size, the more significant the effect of it. When the blending ratio of UFPCC was increased, brightness, whiteness and opacity of the coated paper were improved, while paper gloss was decreased due to the increase in roughness. When the UFPCC with the average particle size of $0.12{\mu}m$ was used, the ink receptivity during off-set printing was improved while print gloss was maintained or a little decreased. It was also observed that the dry-pick and wet-pick strength of coated paper were improved by the use of UFPCC. In conclusion, it is possible to produce the low gloss matt paper with the use of UFPCC since it could improve the optical properties and ink receptivity of coated paper.

Chromatographic Selectivity of Cyano-Bonded Silica Columns in RPLC Based on the Linear Solvation Energy Relationships

  • Park, Jung-Hag;Jang, Myung-Duk;Kwon, Se-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.75-79
    • /
    • 1992
  • Differences in chromatographic properties in RPLC of four brands of cyano bonded silica stationary phases are rationalized in terms of the type and relative strength of the solute-stationary phase interactions, which can be readily inferred from multiple linear regression analyses of retention data for a set of standard compounds on the stationary phases under study based on the linear solvation energy relationships (LSERs). Although four brands of cyano bonded columns studied (CPS-Hypersil, Ultrasphere cyano, Spherisorb-CN and ${\mu}$-Bondapak-CN) have similar bonding density and have been prepared from monofunctional cyanopropylsilane reagents, they possess quite different, relative hydrogen bonding (HB) donor and acceptor strengths. Comparison of the retention behavior on a cyano-bonded silica column with that on an ODS column shows that there are significant differences in the strength of HB interactions between the solute and the stationary phase on the two columns with different functionalities. Information on the differences in the interaction characteristics among brands of the cyano-bonded silica columns and between the ODS and cyano-bonded columns can be utilized to optimize the selectivity for a given separation on these columns.

INFLUENCE OF TOOTH SURFACE ROUGHNESS AND TYPE OF CEMENT ON RETENTION OF COMPLETE CAST CROWNS (치아표면 거칠기와 시멘트 종류가 전부주조관의 유지력에 미치는 영향)

  • Kim, Kil-Su;Song, Chang-Yong;Ahn, Seung-Geun;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.465-473
    • /
    • 1999
  • Bond strength of luting cements to dentin is a critical consideration for success of complete cast crowns. This study was performed to evaluate the relationship between surface characteristics of teeth prepared for complete cast crowns and retention of cemented restorations. Eighty artificial crowns were cast for standardized complete crown tooth preparations accomplished with the use of a special device on recently extracted human teeth. Coarse diamond(#102R, Shofu) and superfine finishing diamond(#SF102R, Shofu) burs of similar shape were used. Crowns in each group were randomly subdivided into few subgroups of 10 for luting cements selected for this study: zinc phosphate cement (FLECK' S), polycarboxylate cement (Poly-F), rein-forced glass ionomer cement (Fuji PLUS). and adhesive resin cement (Panavia 21). Retention was evaluated by measuring the tensile load required to dislodge the artificial crown from tooth preparations with an Instron testing machine, and analysed by one-way ANOVA and Student's t-test. The obtained results were as follows ; 1. When tooth preparation was done with coarse diamond bur, retentive force was diminished in order of Panavia 21 Fuji PLUS, FLECK'S, and Poly-F. Retentive forces showed the significant difference between Fuji PLUS group and FLECK'S group(p<0.001). 2. When tooth preparation was done with superfine diamond bur, retentive force was diminished in order of Fuji PLUS, Panavia 21, FLECK'S, and Poly-F. Retentive forces showed the significant difference between Panavia 21 group and FLECK'S group(p<0.001). 3. Retentive force in coarse tooth surfaces was significantly higher than that in superfine tooth surface with all luting cements(p<0.001), and cement residues were almost retained with-in the cast crown in all groups.

  • PDF

Study of paper Strengthening Properties with Polyvinylamine (Polyvinylamine의 지력증강 특성 연구)

  • Son, Dong-Jin;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.26-31
    • /
    • 2005
  • The purpose of this study was to confirm paper strengthening properties with recently commercialized polyvinylamine. Because of its high cationic charge density, polyvinylamine has been investigated as a size retention and surface coating aids. In this study, we tried to confirm polyvinylamine as wet-end additives to improve dry and wet strength using LBKP and BCTMP pulps. As a result, we found improvement of dry and wet tensile properties of polyvinylamine with BCTMP were much better than LBKP condition. This phenomena could be explained that ionic bonding of cationic charge of polyvinylamine with abundant anionic substances of BCTMP was a very important factor to improve dry and wet strength of paper.

Weight Loss Rates and Physical Properties Changes of Cellulose Fabrics by Cellulase Treatment (셀룰라제처리에 의한 섬유소계직물의 감량률과 물리적성능 변화)

  • Lee Hye-Ja;Chon Hae-Kyung;Yoo Hye-Ja
    • Journal of the Korean Home Economics Association
    • /
    • v.37 no.12 s.142
    • /
    • pp.169-177
    • /
    • 1999
  • This study has examined weight loss rates of Iyoceu, lyocell/cotton, cotton that were treated with cellulase under different concentration, time, temperature and pH. and compared physical properties changes of tensile strength, drape, moisture absorbency, shrinkage and dyeability. The notable results are summarized as follows: Lyocell was in need of pretreatment by NaOH in the side of weight loss, tensile strength and dyeability. Weight loss rates of cellulose fabrics by cellulase treatment were in the order of cotton > lyocell/cotton > lyocell at the same conditions. In case of lyocell and lyocell/cotton, weight loss rates showed up lower than cotton, while strength retention decreased, drape and strength flexibility were highly improved after cellulase treatment.

  • PDF

Fibers Flocculation and Physical Properties Changes of Paper Depending on Cationic Polymer Addition (양이온성 고분자 첨가에 따른 섬유의 응집 및 종이 물성 변화)

  • Yoon, Doo-Hoon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.10-16
    • /
    • 2005
  • Flocculation of fibers and its distribution in paper are related to flocculation mechanisms, retention and drainage. Relationship between flocculation mechanisms and physical properties of paper has not been fully studied. In this study, flocculation of fibers was investigated by changing cationic polymers for flocculation mechanism analysis. Flocculation of stock and physical strength of paper were similar when using branched PAM and linear PAM with fillers and microparticles Flocculation and physical strength were also similar when using branched PAM and linear PAM and microparticles without fillers. In that case excessive flocculation was not produced, so formation was improved but physical strength was decreased. When using branched PAM instead of linear PAM with filler addition, drainage time was decreased, air permeability was improved, and physical strength was increased.

Material Retention: A Novel Approach to Performance of Pigment Coating Colors (물질 보류 : 안료 코팅 처리를 위한 새로운 시도)

  • McKenzie, Ken;Rutanen, Anne;Lehtovuori, Jukka;Ahtikari, Jaana;Piilola, Teuvo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.47-70
    • /
    • 2008
  • Cost efficiency is today the primary requirement in the paper and board industry. This has led therefore, to a greater preponderance of products with specifically designed functionality to take account of current industry needs. Continually increasing machine coating speeds together with these new coating colour components have put more emphasis on the importance of the correct rheology and water retention of the coating colours to achieve good runnability and end product quality. In the coating process, some penetration of the aqueous phase, to the base paper or board must occur to anchor the pre-coating to the base or the topcoat to the pre-coat. The aqueous phase acts as a vehicle not only for the binder, but also for the other components. If this water or material penetration is not controlled, there will be excessive material shift from the coating colour to the base, before immobilization of the coating colour will stop this migration. This can result in poor machine runnability, unstable system and uneven coating layer, impacting print quality. The performance of rheology modifiers or thickeners on the coating color have tended to be evaluated by the term, "water retention". This simple term is not sufficient to explain their performance changes during coating. In this paper we are introducing a new concept of "material retention", which takes note of the total composition of the coating colour material and therefore goes beyond the concept of only water retention. Controlled material retention leads to a more uniform z-directional distribution of coating colour components. The changes that can be made to z-directional uniformity will have positive effects on print quality as measured by surface strength, ink setting properties, print gloss, mottling tendency. Optical properties, such as light scattering, whiteness and light fastness delivery should also be improved. Additionally, controlled material retention minimizes changes to the coating colour with time in re-circulation giving less fluctuation in quality in the machine direction since it more closely resembles fresh coating for longer periods. Use of the material retention concept enables paper and board producers to have more stable runnability (i.e. lower process costs), improved end product quality (i.e. better performance of used chemicals) and/or optimized use of coating colour components (i.e. lower total formulation cost)

  • PDF

The Performance of Concrete Used High Strength Development Polycarboxylate Superplasticizer (고강도용 폴리카르본산계 고성능 감수제가 사용된 콘크리트의 성능)

  • Lee, Wan-Jo;Kang, Sung-Gu;Hwang, In-Dong;Lee, Jae-Yong;Park, Sung;Chug, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.182-187
    • /
    • 2005
  • There are many kinds of polycarboxylate superplasticizer as a functional classification which are introduced to domestic; Water Reducer, Retention, Ultra High Strength Superplasicizer. These are showed different physical behaviors because of the difference in the chemical system and the manners after cement mixing. In the case of water reducer, when $1.2\% of cement weight used, water reducing which is over $30\% is observed, but it take with segregation and the reduction of slump flow shows over 30 cm after 45 min of concrete produce. In the case of retention, when the same quantity used, water reducing which is about $25\% is observed and slump flow which is up to 45 min shows under 15 cm. And in the case of ultra high strength, when $1.2\% of cement weight used, water reducing which is over $30\% is observed, and slump flow which is up to 45 min recorded fewer than 15 cm. Compressive strength of ultra high strength superplasticizer has take effect of early age strength, and in the condition of specific mixing, 18 h-compressive strength is insured for more than $60\;Kgf/cm^2$ and 24 h-compressive strength is insured for more than $80\;Kgf/cm^2$.