DOI QR코드

DOI QR Code

Chromatographic Selectivity of Cyano-Bonded Silica Columns in RPLC Based on the Linear Solvation Energy Relationships

  • Published : 1992.02.20

Abstract

Differences in chromatographic properties in RPLC of four brands of cyano bonded silica stationary phases are rationalized in terms of the type and relative strength of the solute-stationary phase interactions, which can be readily inferred from multiple linear regression analyses of retention data for a set of standard compounds on the stationary phases under study based on the linear solvation energy relationships (LSERs). Although four brands of cyano bonded columns studied (CPS-Hypersil, Ultrasphere cyano, Spherisorb-CN and ${\mu}$-Bondapak-CN) have similar bonding density and have been prepared from monofunctional cyanopropylsilane reagents, they possess quite different, relative hydrogen bonding (HB) donor and acceptor strengths. Comparison of the retention behavior on a cyano-bonded silica column with that on an ODS column shows that there are significant differences in the strength of HB interactions between the solute and the stationary phase on the two columns with different functionalities. Information on the differences in the interaction characteristics among brands of the cyano-bonded silica columns and between the ODS and cyano-bonded columns can be utilized to optimize the selectivity for a given separation on these columns.

Keywords

References

  1. J. Chromatogr. v.464 R. M. Smith;S. L. Miller
  2. Prog. Phys. Org. Chem. v.13 M. J. Kamlet;J. L. M. Abboud;R. W. Taft
  3. Acta, Chem. Scand. v.B39 M. J. Kamlet;R. W. Taft
  4. J. Chem. Soc. Faraday Trans. I v.78 M. J. Kamlet;R. W. Taft;P. W. Carr;M. H. Abraham
  5. Anal. Chem. v.56 J. E. Brady;D. Bjorkman;C. D. Herter;P. W. Carr
  6. J. Chromatogr. v.465 J. H. Park;P. W. Carr
  7. Anal. Chem. v.57 P. C. Sadek;P. W. Carr;R. M. Doherty;M. J. Kamlet;R. W. Taft;M. H. Abraham
  8. Anal. Chem. v.58 P. W. Carr;R. M. Doherty;M. J. Kamlet;R. W. Taft;W. Melander;Cs. Horvath
  9. Chromatographia v.25 J. H. Park;P. W. Carr;M. H. Abraham;R. W. Taft;R. M. Doherty;M. J. Kamlet
  10. Bull. Korean Chem. Soc. v.11 J. H. Park;M. D. Jang;S. T. Kim
  11. Bull. Korean Chem. Soc. v.11 J. H. Park
  12. Applied Linear Regression S. Weisberg
  13. J. Chromatogr. v.513 J. H. Park;M. D. Jang;D. S. Kim;P.W. Carr
  14. Tetrahedron v.41 T. M. Keygowski;P. K. Wrona;U. Zielkowska
  15. J. Org. Chem. v.49 M. J. Kamlet;J. L. M. Abboud;M. H. Abraham;R. W. Taft
  16. Anal. Chem. v.52 R. M. McCormick;B. L. Karger
  17. J. Chromatogr. v.199 R. M. McCormick;B. L. Karger
  18. J. Chromatogr. v.241 C. R. Yonker;T. A. Zwier;M. F. Burke
  19. J. Chromatogr. v.241 C. R. Yonker;T. A. Zwier;M. F. Burke
  20. Talanta v.38 P. T. Ying;J. G. Dorsey
  21. J. Phys. Chem. v.91 M. J. Kamlet;R. M. Doherty;M. H. Abraham;P. W. Carr;R. F. Doherety;R. W. Taft
  22. J. Chromatogr. v.236 R. M. Smith
  23. J. Chromatogr. v.388 R. M. Smith;G. A. Murilla;C. M. Burr

Cited by

  1. Characterization of surface-confined ionic liquid stationary phases: impact of cation and anion identity on retention vol.393, pp.1, 2009, https://doi.org/10.1007/s00216-008-2482-1
  2. Preparation and Application of Ionic Liquid-Modified Stationary Phases in High Performance Liquid Chromatography vol.47, pp.2, 1992, https://doi.org/10.1080/01496395.2011.608402