• Title/Summary/Keyword: Strength of bone

Search Result 499, Processing Time 0.035 seconds

ACOUSTIC EMISSION CHARACTERISTIC OF THE RAT FEMUR AFTER ADMINISTRATION OF SODIUM FLUORIDE (불소섭취에 따른 백서 대퇴골의 파절특성에 관한 Acoustic Emission 연구)

  • Song, Keun-Bae;Lee, Young-Eun;Kim, Hye-Young;Lee, Sang-Han
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.1
    • /
    • pp.16-23
    • /
    • 2002
  • To understand the micro-mechanical changes and the effects of the fluoride on rat's femur after administration of sodium fluoride, the three-point bending test, acoustic emission analysis during the three-point bending test and scanning electron microscopy were performed. The obtained results were as follows: 1. Bone strength increased in the rats given 1, 5, 10 and 20 ppm of fluoride but, there were no statistical significances (p>0.05). 2. With increasing the concentration of fluoride, most AE events released rapidly just before the maximum load and smaller events were recorded than the control group's. The average of cumulative AE event counts until maximum load of the femur in 20 ppm group were significantly small with respect to the control group's (p<0.05). 3. Fracture surfaces were well coincide with the results of acoustic emission behavior. Analyses of fracture surfaces indicated that, consistent with its the highest load, rat femur in 20 ppm fluoride group displays the roughest surface.

Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC

  • Dadmand, Behrooz;Pourbaba, Masoud;Sadaghian, Hamed;Mirmiran, Amir
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.451-465
    • /
    • 2020
  • This paper presents experimental and numerical investigations on mechanical properties of ultra-high-performance fiber-reinforced concrete (UHPFRC) with four types of steel fibers; micro steel (MS), crimped (C), round crimped (RC) and hooked-end (H), in two fiber contents of 1% and 2% (by volume) and two lengths of 13 and 30 mm. Compression, direct tension, and four-point bending tests were carried out on four types of specimens (prism, cube, dog-bone and cylinder), to study tensile and flexural strength, fracture energy and modulus of elasticity. Results were compared with UHPC specimens without fibers, as well as with available equations for the modulus of elasticity. Specimens with MS fibers had the best performance for all mechanical properties. Among macro fibers, RC had better overall performance than H and C fibers. Increased fibers improved all mechanical properties of UHPFRC, except for modulus of elasticity, which saw a negligible effect (mostly less than 10%). Moreover, nonlinear finite element simulations successfully captured flexural response of UHPFRC prisms. Finally, nonlinear regression models provided reasonably well predictions of flexural load-deflection behavior of tested specimens (coefficient of correlation, R2 over 0.90).

Biocompatibility of Nanoscale Hydroxyapatite-embedded Chitosan Films

  • Sun, Fangfang;Koh, Kwangnak;Ryu, Su-Chak;Han, Dong-Wook;Lee, Jaebeom
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3950-3956
    • /
    • 2012
  • In order to improve the bioactivity and mechanical properties of hydroxyapatite (HAp), chitosan (Chi) was in situ combined into HAp to fabricate a composite scaffold by a sublimation-assisted compression method. A highly porous film with sufficient mechanical strength was prepared and the bioactivity was investigated by examining the apatite formed on the scaffolds incubated in simulated body fluid. In addition, the cytotoxicity of the HAp/Chi composite was studied by evaluating the viability of murine fibroblasts (L-929 cells) exposed to diluted extracts of the composite films. The apatite layer was assessed using scanning electronic microscopy, inductively coupled plasma-optical emission spectrometry and weight measurement. Composite analysis showed that a layer of micro-sized, needle-like crystals was formed on the surface of the composite film. Additionally, the WST-8 assay after L-929 cells were exposed to diluted extracts of the composite indicated that the HAp/Chi scaffold has good in vitro cytocompatibility. The results indicated that HAp/Chi composites with porous structure are promising scaffolding materials for bone-patch engineering because their porous morphology can provide an environment conductive to attachment and growth of osteoblasts and osteogenic cells.

Biocompatibility of oxidized alginate/gelatin/BCP -based hydrogel composites

  • Phuong, Nguyen Thi;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Teak
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.40.2-40.2
    • /
    • 2010
  • In this study, oxidized alginate/gelatin/biphase calcium phosphate (BCP)- based hydrogel composites were fabricated. Alginate sodium was oxidized by periodate. The oxidized product was confirmed by using $^1H$ and $^{13}C$ NMR spectra. The number average molecular weight ($M_n$), the average molecular weight ($M_w$) of the oxidized alginate were determined by Gel Permeation Chromatography (GPC). The hydrogel was formed from the oxidized alginate and gelatin solution via Schift-base reaction. The hydrogel showed a highly porosity by a Scanning Electron Microscope (SEM) and Mercury Intrusion Porosimetry (MIP). Crosslinked density of the gel matrix were assessd by trinitrobenzene sulfonic acid (TNBS) assay that shows a high effect on swelling ratio. Increment of the crosslinked desity resulted in enhancing compressive strength of the hydrogel composite. The cytotoxity of hydrogel was assessed with osteoblast MG-63. The hydrogel composites show a high compatibility. The obtained results showed a potential application for bone regeneration in future.

  • PDF

Prediction of Fracture Strains for DP980 Steel Sheets for a Wide Range of Loading Paths (다양한 하중경로에서의 DP980 강판의 파단변형률 예측에 관한 연구)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.176-180
    • /
    • 2015
  • The current study is concerned with the prediction of fracture strains for DP980 steel sheets over a wide range of loading paths. The use of DP980 steel is increasing significantly in automotive industries for enhanced safety and higher fuel efficiency. The material behavior of advanced high-strength steels (AHSSs) sheets sometimes show unpredictable and sudden fracture during sheet metal forming. A modified Lou-Huh ductile fracture criterion is utilized to predict the formability of AHSSs because the conventional forming limit diagram (FLD) constructed based on necking is unable to evaluate the formability of AHSSs sheets. Fracture loci were extracted from three dimensional fracture envelopes by assuming the plane-stress condition to evaluate equivalent plastic strains at the onset of fracture for a wide range of loading paths. Three different types of specimens -- pure shear, dog-bone and plane strain grooved -- were utilized for tensile testing to calibrate the fracture model of DP980 steel sheets. Fracture strains of each loading path were evaluated such that there shows little deviation between fracture strains predicted from the fracture model and the experimental measurements. From the comparison, it is clearly shown that the three dimensional fracture envelopes can accurately predict the onset of the fracture of DP980 steel sheets for complicated loading conditions from compressive loading to shear loading and to equibiaxial tensile loading.

Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment

  • Gao, Xiao-Long;Wang, Jun-Yan;Bian, Chen;Xiao, Ru-Cheng;Ma, Biao
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.765-777
    • /
    • 2022
  • Ultra high performance concrete (UHPC) can be used in the UHPC-steel composite structures especially for bridge structures to achieve high stiffness and high fatigue resistance with low self-weight. The structural performances of UHPC-steel composite slabs subjected to hogging moment have a significant influence on the global stiffness and durability of UHPC-steel composite structures. In order to study the structural behaviors of non-steam-cured UHPC-steel composite slabs subjected to negative moment, five composite slabs combined the thin UHPC layers to steel plates via shear stud connecters with the diameter of 16mm were fabricated and tested under negative moment. The test program aimed to investigate the effect of stud spacing and longitudinal reinforcement ratios on the failure mode, load-deflection behaviors, cracking patterns, bond-slips, and carrying capacities of composite slabs subjected to negative moment. In addition, direct tensile tests for the dog-bone UHPC specimens with longitudinal reinforcement bars were carried out to study the effect of reinforcement bars on the tensile strength of UHPC in the thin structure members. Based on the experimental results, analytical models were also developed to predict the cracking load and ultimate load of UHPC-steel composite slabs subjected to negative moment.

Factor Analysis of Linear Type Traits and Their Relation with Longevity in Brazilian Holstein Cattle

  • Kern, Elisandra Lurdes;Cobuci, Jaime Araujo;Costa, Claudio Napolis;Pimentel, Concepta Margaret McManus
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.784-790
    • /
    • 2014
  • In this study we aimed to evaluate the reduction in dimensionality of 20 linear type traits and more final score in 14,943 Holstein cows in Brazil using factor analysis, and indicate their relationship with longevity and 305 d first lactation milk production. Low partial correlations (-0.19 to 0.38), the medium to high Kaiser sampling mean (0.79) and the significance of the Bartlett sphericity test (p<0.001), indicated correlations between type traits and the suitability of these data for a factor analysis, after the elimination of seven traits. Two factors had autovalues greater than one. The first included width and height of posterior udder, udder texture, udder cleft, loin strength, bone quality and final score. The second included stature, top line, chest width, body depth, fore udder attachment, angularity and final score. The linear regression of the factors on several measures of longevity and 305 d milk production showed that selection considering only the first factor should lead to improvements in longevity and 305 milk production.

A Study on the Treatment of Oriental Medicine Music Therapy for the Children with Developmental Disability (발달장애아 치료(治療)에 쓸 수 있는 한방음악치료(韓方音樂治療) 기법(機法)에 관한 연구(硏究))

  • Lee, Seung-Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.81-91
    • /
    • 2010
  • Objectives: The basic cause of developmental disability is congenital weakness, which is a disorder of the kidney according to the Oriental medicine definition. I suggest the oriental medicine music therapy, which can improve congenital weakness and recover the kidney dysfunction. Methods: This study focused autism and Asperger syndrome in terms of Oriental medicine, and also considered view points from the Western medicine. Conclusions 1. The kidney monitors vital elements which were produced from the bone marrow. Therefore, the growth and the development of a skeletal structure are related to the strength and weakness of kidney, which is measured in Qi score. 2. In a case of the deficiency of kidney, an essence due to congenital defect, it shows the symptoms of the developmental disability such as sluggish reaction and physical movements, falling of memory, hearing, and eyesight. 3. For the kidney disorder, "Eum music therapy", one of the oriental medicine music therapies, can promote development of the kidney and kidney-Qi score for the children with developmental disability.

Displacement-recovery-capacity of superelastic SMA fibers reinforced cementitious materials

  • Choi, Eunsoo;Mohammadzadeh, Behzad;Hwang, Jin-Ha;Lee, Jong-Han
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.157-171
    • /
    • 2019
  • This study investigated the effects of the geometric parameters of superelastic shape memory alloy (SE SMA) fibers on the pullout displacement recovering and self-healing capacity of reinforced cementitious composites. Three diameters of 0.5, 0.7 and 1.0 mm and two different crimped lengths of 5.0 and 10.0 mm were considered. To provide best anchoring action and high bond between fiber and cement mortar, the fibers were crimped at the end to create spear-head shape. The single fiber cement-based specimens were manufactured with the cement mortar of a compressive strength of 84 MPa with the square shape at the top and a dog-bone shape at the bottom. The embedded length of each fiber was 15 mm. The pullout test was performed with displacement control to obtain monotonic or hysteretic behaviors. The results showed that pullout displacements were recovered after fibers slipped and stuck in the specimen. The specimens with fiber of larger diameter showed better displacement recovering capacity. The flag-shaped behavior was observed for all specimens, and those with fiber of 1.0 mm diameter showed the clearest one. It was observed that the length of fiber anchorage did not have a significant effect on the displacement recovery, pullout resistance and self-healing capacity.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.