Browse > Article
http://dx.doi.org/10.12989/sss.2019.24.2.157

Displacement-recovery-capacity of superelastic SMA fibers reinforced cementitious materials  

Choi, Eunsoo (Department of Civil Engineering, Hongik University)
Mohammadzadeh, Behzad (Department of Civil Engineering, Hongik University)
Hwang, Jin-Ha (Department of Material Science and Engineering, Hongik University)
Lee, Jong-Han (Department of Civil Engineering, Inha University)
Publication Information
Smart Structures and Systems / v.24, no.2, 2019 , pp. 157-171 More about this Journal
Abstract
This study investigated the effects of the geometric parameters of superelastic shape memory alloy (SE SMA) fibers on the pullout displacement recovering and self-healing capacity of reinforced cementitious composites. Three diameters of 0.5, 0.7 and 1.0 mm and two different crimped lengths of 5.0 and 10.0 mm were considered. To provide best anchoring action and high bond between fiber and cement mortar, the fibers were crimped at the end to create spear-head shape. The single fiber cement-based specimens were manufactured with the cement mortar of a compressive strength of 84 MPa with the square shape at the top and a dog-bone shape at the bottom. The embedded length of each fiber was 15 mm. The pullout test was performed with displacement control to obtain monotonic or hysteretic behaviors. The results showed that pullout displacements were recovered after fibers slipped and stuck in the specimen. The specimens with fiber of larger diameter showed better displacement recovering capacity. The flag-shaped behavior was observed for all specimens, and those with fiber of 1.0 mm diameter showed the clearest one. It was observed that the length of fiber anchorage did not have a significant effect on the displacement recovery, pullout resistance and self-healing capacity.
Keywords
cement-based composites; superelastic SMA fibers; self-healing capacity; crack-closing capacity; displacement recovery; flag-shaped behavior;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Abou-Elfath, H. (2017), "Evaluating the ductility characteristics of self-centering buckling-restrained shape memory alloy braces", Smart Mater. Struct., 26(5), 055020.   DOI
2 Aguirre, D.A. and Montejo, L.A. (2014), "Damping and frequency changes induced by increasing levels of inelastic seismic demand", Smart Struct. Syst., 14(3), 445-468. http://dx.doi.org/10.12989/sss.2014.14.3.445.   DOI
3 Baghani, M., Naghdabadi, R., Arghavani, J. and Sohrabpour, S. (2012), "A thermodynamically-consistent 3D constitutive model for shape memory polymers", Int. J. Plasticity, 35, 13-30. https://doi.org/10.1016/j.ijplas.2012.01.007.   DOI
4 Mohammadzadeh, B. and Noh, H.C. (2015), "Numerical analysis of dynamic responses of the plate subjected to impulsive loads", Int. J. Civil, Environ. Struct. Constr. Architect. Eng., 9(9), 1148-1151.
5 Mohammadzadeh, B. and Noh, H.C. (2016), "Investigation into buckling coefficients of plates with holes considering variation of hole size and plate thickness", Mechanika, 22(3), 167-175. https://doi.org/10.5755/j01.mech.22.3.12767.
6 Oudah, F. and El-Hacha, R. (2017), "Joint performance in concrete beam-column connections reinforced using SMAsmart material", Eng. Struct., 151, 745-760. https://doi.org/10.1016/j.engstruct.2017.08.054.   DOI
7 Mohammadzadeh, B. and Noh, H.C. (2017), "Analytical method to investigate nonlinear dynamic responses of sandwich plates with FGM faces resting on elastic foundation considering blast loads", Compos. Struct., 174, 142-157. https://doi.org/10.1016/j.compstruct.2017.03.087.   DOI
8 Mohammadzadeh, B. and Noh, H.C. (2019), "An analytical and numerical investigation on the dynamic responses of steel plates considering the blast loads", Int. J. Steel Struct., 19(2),603-617.   DOI
9 Mohammadzadeh, B., Bina, M. and Hasounizadeh, H. (2012), "Application and comparison of mathematical and physical models on inspecting slab of stilling basin floor under static and dynamic forces", Appl. Mech. Mater., 147, 283-287. https://doi.org/10.4028/www.scientific.net/AMM.147.283.   DOI
10 Pereiro-Barcelo, J. and Bonet, J. (2017), "Ni-Ti SMA bars behaviour under compression", Constr. Build. Mater., 155, 348-362. https://doi.org/10.1016/j.conbuildmat.2017.08.083.   DOI
11 Mohammadzadeh, B. and Noh, H.C. (2014), "Use of buckling coefficients in predicting buckling load of plates with and without holes", J. Korean Soc. Adv. Copm. Struct., 5(3), 1-7. http://dx.doi.org/10.11004/kosacs.2014.5.3.001.   DOI
12 Choi, E., Kim, D.J., Hwang, J.H. and Kim, W.J. (2016), "Prestressing effect of cold-drawn short NiTi SMA fibers in steel reinforced mortar beams", Smart Mater. Struct., 25(8), 085041.   DOI
13 Choi, E., Chae, S.W., Park, H., Nam, T.H., Mohammadzadeh, B. and Hwang, J.H. (2018), "Investigating self-centering capacity of superelastic shape memory alloy fibers with different anchorages through pullout tests", J. Nanosci. Nanotechno., 18, 6228-6232. https://doi.org/10.1166/jnn.2018.15635.   DOI
14 Choi, E., Cho, B.S. and Lee, S. (2015), "Seismic retrofit of circular RC columns through using tensioned GFRP wires winding", Compos. Part B: Eng., 83, 216-225. https://doi.org/10.1016/j.compositesb.2015.08.041.   DOI
15 Choi, E., Kim, D.J., Chung, Y.S., Kim, H.S., and Jung, C. (2015), "Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers", Smart Mater. Struct., 24(1), 015018.   DOI
16 Choi, E., Kim, D.J., Jeon, C. and Gin, S. (2016), "New SMA short fibers for cement composites manufactured by cold drawing", J. Mater. Sci. Res., 5(2), 74-87.   DOI
17 Choi, E., Kim, D.J., Lee, J.H. and Ryu, G.S. (2017), "Monotonic and hysteretic pullout behavior of superelastic SMA fibers with different anchorages", Compos. Part B: Eng., 108, 232-242. https://doi.org/10.1016/j.compositesb.2016.09.080.   DOI
18 Choi, E., Kim, D.J., Youn, H. and Nam, T.H. (2015), "Repairing cracks developed in mortar beams reinforce by cold-drawn NiTi or NiTiNb SMA fibers", Smart Mater. Struct., 24(12), 125010.   DOI
19 Choi, E., Mohammadzadeh, B., Hwang, J.H. and Kim, W.J. (2018), "Pullout behavior of superelastic SMA fibers with various endshapes embedded in cement mortar", Constr. Build. Mater., 167, 605-616. https://doi.org/10.1016/j.conbuildmat.2018.02.070.   DOI
20 Qiu, C., Zhang, Y., Qi, J. and Li, H. (2018), "Seismic behavior of properly designed CBFs equipped with NiTi SMA braces", Smart Struct. Syst., 21(4), 479-491. https://doi.org/10.12989/sss.2018.21.4.479.   DOI
21 Truong, B.T., Bui, T.T., Limam, A., Larabi, A.S., Nguyen, K.L. and Michel, M. (2017), Experimental investigations of reinforced concrete beams repaired/reinforcd by TRC composites", Compos. Struct., 168, 826-839. https://doi.org/10.1016/j.compstruct.2017.02.080.   DOI
22 Schrooten, J., Michaud, V., Parthenios, J., Psarras, G.C., Galiotis, C., Gotthardt, R., Manson, J.A. and Humbeeck, J.V. (2002), "Progress on composites with embedded shape memory alloy wires", Materials Transactions, Special Issue on Smart Materials Fundamentals and Applications, 43(5), 961-973.
23 Shahverdi, M., Czaderski, C. and Motavalli, M. (2016), "Ironbased shape memory alloys for prestressed near- surface mounted strengthening of reinforced concrete beams", Constr. Build. Mater., 112, 28-38. https://doi.org/10.1016/j.conbuildmat.2016.02.174.   DOI
24 Shokri, T. and Nanni, A. (2014), "Crack source location by acoustic emission monitoring method in RC strips during in-situ load test", Smart Struct. Syst., 13(1), 155-171. http://dx.doi.org/10.12989/sss.2014.13.1.155.   DOI
25 Wang, J., Sehitoglu, H. and Maier, H.J. (2014), "Dislocation slip stress prediction in shape memory alloys", Int. J. Plasticity, 54, 247-266. https://doi.org/10.1016/j.ijplas.2013.08.017.   DOI
26 Yang, M., Feng, L., Gu, H., Su, H., Cui, X. and Cao, W. (2017), "Crack detection study for hydraulic concrete using PPPBOTDA", Smart Struct. Syst., 20(1), 75-83. https://doi.org/10.12989/sss.2017.20.1.075.   DOI
27 Feng, X.Q. and Sun, Q. (2007), "Shakedown analysis of shape memory alloy structures", Int. J. Plasticity, 23(2), 183-206. https://doi.org/10.1016/j.ijplas.2006.04.001.   DOI
28 Choi, E., Mohammadzadeh, B., Kim, D. and Jeon, J.S. (2018), "A new experimental investigation into the effects of reinforcing mortar beams with superelastic SMA fibers on controlling and closing cracks", Compos. Part B: Eng., 137, 140-152. https://doi.org/10.1016/j.compositesb.2017.11.017.   DOI
29 Dyshlyuk, A.V., Makarova, N.V., Vitrik, O.B., Kulchin, Y.N. and Babin, S.A. (2017), "Strain monitoring of reinforced concrete with OTDR-based FBG interrogation technique", Smart Struct. Syst., 20(3), 343-350. https://doi.org/10.12989/sss.2017.20.3.343.   DOI
30 Farmani, M.A. and Ghassemieh, M. (2016), "Shape memory alloy-based moment connections with superior self-centering properties", Smart Mater. Struct., 25(7), 075028.   DOI
31 Gribniak, V., Rimkus, A., Torres, L. and Hui, D. (2018), "An experimental study on cracking and deformations of tensile concrete elements reinforced with multiple GFRP bars", Compos. Struct., 201, 477-485. https://doi.org/10.1016/j.compstruct.2018.06.059.   DOI
32 Hadi, A. and Akbari, H. (2016), "Modeling and control of a flexible continuum module actuated by embedded shape memory alloys", Smart Struct. Syst., 18(4), 663-682. http://dx.doi.org/10.12989/sss.2016.18.4.663.   DOI
33 Kim, B. and Cho, S. (2018), "Efflorescence assessment using hyperspectral imaging for concrete structure", Smart Struct. Syst., 22(2), 209-221. https://doi.org/10.12989/sss.2018.22.2.209.   DOI
34 Horney, L., Chlup, V.H., Janouchova, K. and Vysanska, M. (2012), "Single fiber pull-out test of nitinol-silicon-textile composite", Bull. Appl. Mech., 8(32), 77-80.
35 Jang, K. and An, Y.K. (2018), "Multiple crack evaluation on concrete using a line laser thermography scanning", Smart Struct. Syst., 22(2), 201-207. https://doi.org/10.12989/sss.2018.22.2.201.   DOI
36 Jiang, Z., Li, W. and Yuan, Z. (2015), "Influence of mineral additives and environmental conditions on the self-healing capabilities of cementitious materials", Cement Concrete Compos., 57, 116-127. https://doi.org/10.1016/j.cemconcomp.2014.11.014.   DOI
37 Kabir, M.R., Alam, M.S., Said, A.M. and Ayad, A. (2016), "Performance of hybrid reinforced concrete beam column joint: A critical review", Fibers, 4(13), 1-12, doi:10.3390/fib4020013.   DOI
38 Kang, M.S., An, Y.K. and Kim, D.J. (2018), "Electrical impedance-based crack detection of SFRC under varying environmental conditions", Smart Struct. Syst., 22(1), 1-11. https://doi.org/10.12989/sss.2018.22.1.001.   DOI
39 Kim, D.J., Kim, H.A., Chung, Y.S. and Choi, E. (2014), "Pullout resistance of straight NiTi shape memory alloy fibers in cement mortar after cold drawing and heat treatment", Compos. Part B, 67, 588-594. https://doi.org/10.1016/j.compositesb.2014.08.018.   DOI
40 Kim, H.Y., Ikehara, Y., Kim, J.I., Hosoda, H. and Miyazaki, S. (2006), "Martnesitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys", Acta Materialia, 54(9), 2419-2429. https://doi.org/10.1016/j.actamat.2006.01.019.   DOI
41 Mehrabi, R. and Karamooz Ravari, M.R. (2015), "Simulation of superelastic SMA helical springs", Smart Struct. Syst., 16(1), 183-194. http://dx.doi.org/10.12989/sss.2015.16.1.183.   DOI
42 Kim, W.J., Lee, J.M., Kim, J.S. and Lee, C.J. (2012), "Measuring high speed crack propagation in concrete fracture test using mechanoluminescent material", Smart Struct. Syst., 10(6), 547-555. http://dx.doi.org/10.12989/sss.2012.10.6.547.   DOI
43 Li, X., Li, M., and Song, G. (2015), "Energy-dissipating and selfrepairing SMA-ECC composite material system", Smart Mater. Struct., 24(2), 025024.   DOI
44 Liu, J.L., Huang, H.Y. and Xie, J.X. (2015), "Superelastic anisotropy characteristics of columnar-grained Cu-Al_Mn shape memory alloys and its potential applications", Mater. Design, 85, 211-220. https://doi.org/10.1016/j.matdes.2015.06.114.   DOI