• 제목/요약/키워드: Strength mismatch

검색결과 88건 처리시간 0.027초

수치해석과 실험에 의한 SINTAP 용접 구조물 균열 평가법의 검증 (Finite Element and Experimental Validation of SINTAP Defect Assessment Procedure for Welded Structure)

  • 김윤재;김진수
    • Journal of Welding and Joining
    • /
    • 제22권1호
    • /
    • pp.50-57
    • /
    • 2004
  • This paper provides FE and experimental validation of the defect assessment method for strength mismatched welded structures, resulting from the Brite Euram SINTAP (Structural Integrity Assessment Procedures for European Industry) project. This shows that the proposed method is conservative, and that the degree of conservatism is similar to that embedded in the methods for homogeneous structures. It provides confidence in the use of the proposed SINTAP method for assessing defective weld strength mismatched structures.

항복강도 불일치 반타원 계면균열 선단에서의 응력장 (Stress Fields Along Semi-Elliptical Interfacial Crack Front with Yield-Strength-Mismatch)

  • 최호승;이형일
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.126-137
    • /
    • 2003
  • Many research works have been performed on the J-T approach for elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed fur more practical 3D structures than the idealized plane strain specimens. The present study deals mainly with 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes fur semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. The validity of J-T approach is thereby extended to 3D yield-strength-mismatched weld joints, and useful information is inferred fur the design or assessment of pipe welds.

용접부 균열의 균열진전력에 대한 구조물 형상과 균열 위치의 영향 (Effect of Structural Geometry and Crack Location on Crack Driving Forces for Cracks in Welds)

  • 오창균;김종성;진태은;김윤재
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.931-940
    • /
    • 2006
  • Defect assessment of a weld zone is important in fitness-for-service evaluation of plant components. Typically a J and $C^*$ estimation method for a defective homogeneous component is extended to a mismatched component, by incorporating the effect due to the strength mismatch between the weld metal and the base material. The key element is a mismatch limit load. For instance, the R6/R5 procedure employs an equivalent material concept, defined by a mismatch limit load. A premise is that if a proper mismatch limit load solution is available, the same concept can be used for any defect location (either a weld centre defect or a heat affected zone (HAZ) defect) and for any material combination (either two-material or multi-material combinations; either similar or dissimilar joints). However, validation is still limited, and thus a more systematic investigation is needed to generalise the suggestion to any geometry, any defect location and any material combination. This paper describes the effect of structural geometry on the $C^*$ integral for defective similar welds, based on systematic elastic-creep 2-D and 3-D finite element (FE) analyses, to attempt to elucidate the questions given above. It is found that the existing 'equivalent material' concept is valid only for limited cases, although it provides conservative estimates of $C^*$ for most of cases. A modification to the existing equivalent material concept is suggested to improve accuracy.

동적하중 하에서의 강도적 불균질부를 갖는 용접이음재의 강도 및 파괴 특성 (Characteristics of Strength and Fracture in Strength Mismatched Joint by Dynamic Loading)

  • 안규백;;;방한서
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.55-63
    • /
    • 2003
  • Welded joint generally has heterogeneity of strength, material, and fracture toughness and it is important to understand the characteristics of material strength and fracture of welded joint considering heterogeneous effect. Characteristics of strength and fracture of an undermatched joint under dynamic loading was studied by round-bar tension tests and thermal elastic-plastic analyses in this paper. The strength and fracture of the undermatched joints should be evaluated based on the effects of the strain rate and the temperature including temperature rise during the dynamic loading. The differences of fracture characteristics like such as ductile-to-brittle transition behavior are well precisely explained from the stress-strain distribution obtained by numerical analysis.

Crack behavior of Surface Strengthened Zirconia-Alumina Composite During Indentation

  • Balakrishnan, A.;Chu, M.C.;Panigrahi, B.B.;Choi, Je-Woo;Kim, Taik-Nam;Park, J.K.;Cho, S.J.
    • 한국재료학회지
    • /
    • 제16권12호
    • /
    • pp.743-746
    • /
    • 2006
  • ZTA tubes were prepared by centrifugal casting and sintered at $1600^{\circ}C$ for 2 hrs. The ZTA tubes were machined into specimens of $3{\times}4{\times}40$ mm. Molten Soda lime glass (SLG) was penetrated into the surface of ZTA at an optimized condition of $1500^{\circ}C$ for the holding time of 5 h and furnace cooled. The extra glass on the surface was removed using a resin bonded diamond wheel. The glass penetrated samples were tested for their flexural strength using four point bend test. Vickers Indentation cracks were made on the glass penetrated surface at different loads of 9.8 N, 49 N, 98 N and 196 N. The residual compression on the surface enhanced the flexural strength and crack arrest behaviour remarkably. This was attributed to the thermoelastic mismatch between the glass and ZTA matrix during cooling.

용접부 중앙에 원주방향균열이 있는 배관에 대한 강도불일치 한계하중 해석 및 파괴역학 평가 (Mis-Match Limit Load Analyses and Fracture Mechanics Assessment for Welded Pipe with Circumferential Crack at the Center of Weldment)

  • 송태광;전준영;심광보;김윤재;김종성;진태은
    • 대한기계학회논문집A
    • /
    • 제34권1호
    • /
    • pp.19-26
    • /
    • 2010
  • 본 논문에서는 유한요소 해석을 통해 용접부 중앙에 원주방향균열이 있는 배관에 대한 강도불일치 한계하중 해석 및 파괴역학 해석을 수행하였다. 강도불일치 한계하중식을 제시하기 위해 강도불일치 비, 용접부 폭, 균열 길이 및 배관 반경비에 대한 체계적인 변수 해석을 수행하였으며 참조응력법을 바탕으로 스테인리스강 및 페리틱 강에 대한 J-적분 계산을 수행하였다. 본 연구에서 제시한 강도불일치 한계하중을 사용하여 참조응력을 정의할 때, 보다 정확한 J-적분 결과를 얻을 수 있었다.

Secret Key Generation Using Reciprocity in Ultra-wideband Outdoor Wireless Channels

  • Huang, Jing Jing;Jiang, Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.524-539
    • /
    • 2014
  • To investigate schemes of secret key generation from Ultra-wideband (UWB) channel, we study a statistical characterization of UWB outdoor channel for a campus playground scenario based on extensive measurements. Moreover, an efficient secret key generation mechanism exploiting multipath relative delay is developed, and verification of this algorithm is conducted in UWB Line-of-sight (LOS) outdoor channels. For the first time, we compare key-mismatch probability of UWB indoor and outdoor environments. Simulation results demonstrate that the number of multipath proportionally affects key generation rate and key-mismatch probability. In comparison to the conventional method using received signal strength (RSS) as a common random source, our mechanism achieves better performance in terms of common secret bit generation. Simultaneously, security analysis indicates that the proposed scheme can still guarantee security even in the sparse outdoor physical environment free of many reflectors.

SiC의 산화에 의한 $Al_2O_3/SiC$ 복합체의 제조 (Fabrication of $Al_2O_3/SiC$ Composite Through Oxidation of SiC)

  • 김경환;이홍림;이형민;홍기곤
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.535-543
    • /
    • 1997
  • The surface of SiC particles were partially oxidized to produce SiO2 layers on the SiC particles to prepare Al2O3/SiC composite by formation of mullite bonds between the grains of Al2O3 and SiC during sintering at 1$600^{\circ}C$. This process is considered to enable the sintering of Al2O3/SiC composite at lower temperature and also to relieve the stress, produced by thermal expansion mismatch between Al2O3 and SiC. In fact, Al2O3/SiC composite prepared by oxidation of SiC was observed to be more effectively sintered and densified at lower temperature. Maximum density, flexural strength and microhardness were obtained with 5.65 vol% of mullite content in Al2O3/SiC composite.

  • PDF

Bonding evolution of bimetallic Al/Cu laminates fabricated by asymmetric roll bonding

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2019
  • Roll bonding (RB) process of bi-metal laminates as a new noble method of bonding has been widely used in the production of bimetal laminates. In the present study, asymmetric roll bonding process as a new noble method has been presented to produce Al/Cu bimetallic laminates with the thickness reduction ratios 10%, 20% and 30% together with mismatch rolling diameter ($\frac{R_2}{R_1}$) ratio 1:1, 1:1.1 and 1:1.2. ABAQUS as a finite element simulation software was used to model the deformation of samples. The main attention in this study focuses on the bonding properties of Al/Cu samples. The effect of the $\frac{R_2}{R_1}$ ratios was investigated to improve the bond strength. During the simulation, for samples produced with $\frac{R_2}{R_1}=1:1.2$, the vertical plastic strain of samples was reach the maximum value with a high quality bond. Moreover, the peeling surface of samples after the peeling test was investigated by the scanning electron microscopy (SEM).

원주방향 관통균열이 용접부 중앙에 존재하는 V-그루브 맞대기 용접배관의 한계하중 해석 (Mismatch Limit Load Analyses for V-groove Welded Pipe with Through-wall Circumferential Defect in Centre of Weld)

  • 김상현;한재준;정진택;김윤재
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1379-1386
    • /
    • 2013
  • 본 논문에서는 용접부 중앙에 원주방향 관통균열이 있는 V-그루브 맞대기 용접 배관의 한계하중 해석을 수행하였다. V-그루브 맞대기 용접 배관이 그루브 각 $45^{\circ}$, $90^{\circ}$를 갖는 형상에 대한 한계하중 식을 제시하기 위해 용접 형상의 변화에 따른 용접부 너비를 정의하였고 강도불일치 비, 용접부 너비, 균열 길이 및 배관 반경 비에 대한 체계적인 변수 해석을 수행 하였다. 모재와 용접재는 탄성 완전소성재료로 가정하였으며 상불일치와 하불일치 조건에서의 인장 하중과 굽힘 하중에 대한 강도불일치 한계하중이 강도불일치 비($M_F$)와 형상변수(${\psi}$)를 통해 정량화 됨을 유한요소 해석을 통해 확인하였다.