• Title/Summary/Keyword: Strength incremental ratio

Search Result 37, Processing Time 0.023 seconds

Fundamental Study on Evaluation method of Activity Factor of Fly Ash (플라이애시의 활성도지수 평가에 관한 기초적 연구)

  • Park, Sang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.59-65
    • /
    • 2008
  • In the evaluation method of KS on the activity factor of fly ash, same amount of cement should be replaced with fly ash. Therefore, contradictory effects on concrete strength exist, i. e. strength decease due to low content of cement and strength increase of strength due to filling-pore-function of fly ash. European Committee for Standardization (CEN) specifies the method 1 to 4. adding fly ash without reducing the content of cement, for the evaluation method on activity factor of fly ash. This study investigates the applicability of the method 2 of CEN to mix design of concrete. The followings are derived ; There is a key ratio of f)y ash mixing which enhances the incremental ratio of mixing water to improve fluidity of mortar. The incremental ratio of mixing water is maximized about 11% ratio of fly ash mixing. Compressive strength most slightly increases at that ratio of fly ash mixing. Activity factor of fly ash increases as water-cement ratio becomes low and contents of fly ash becomes high. Moreover, quality of fly ash and condition of mix design affect the applicable amount of fly ash and available range of water-cement ratio. However, this method has some problems for practical purpose because activity factors of fly ash for some cases are over 1.0. Further research should be conducted to develop more useful method of evaluating activity factor of fly ash.

Evaluation of Strength Incremental Ratio of Korean Marine Clayey Soil (국내 해성 점성토의 강도증가율 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.31-39
    • /
    • 2017
  • Applicability of Skempton's and Hansbo's equation for estimating strength incremental ratio of Korean marine clayey soil was analyzed. These empirical equations have been commonly applied to design soft ground improvement by, especially, staged loading method. Strength incremental ratios proposed by Skempton (1954, 1957) and Hansbo (1957) using field vane tests(FVTs), measured in Scandinavia depends on plasticity index and liquid limit. Although lean clay in Scandinavia can be classified as clay based on USCS, this soil contains no clay mineral because it was produced by the glacial grinding of rock, sometimes, called rock flour. On the contrary, plasticity indices of Korean marine clayey soils increase linearly with the percentage of clay fraction (% finer than $2{\mu}m$ by weight). Except for strength incremental ratios using $q_u/2$ values in the case of soils having a low plasticity, such as Incheon, Hwaseong and Gunsan soils, these values are in the range of 0.25 to 0.35, independently of the plasticity index, $I_p$.

MPA-based IDA Using the Inelastic Displacement ratio, CR and the Collapse Intensity, RC (비탄성변위비와 붕괴강도비를 이용한 MPA기반의 IDA 해석법)

  • Han, Sang-Whan;Seok, Seung-Wook;Lee, Tae-Sub
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.33-39
    • /
    • 2010
  • This study develops an approximate procedure for incremental dynamic analysis (IDA) using modal pushover analysis (MPA) with empirical equations of the inelastic displacement ratio ($C_R$) and the collapse strength ratio ($R_C$). By using this procedure, it is not required to conduct linear or nonlinear response history analyses of multi- or single- degree of freedom (MDF) systems. Thus, IDA curves can be effortlessly obtained. For verification of the proposed procedure, the 6-, 9- and 20-story steel moment frames are tested under an ensemble of 44 ground motions. The results show that the MPA-based IDA with empirical equations of $C_R$ and $R_C$ produced accurate IDA curves of the MDF systems. The computing time is almost negligible compared to the exact IDA using repeated nonlinear response history analysis (RHA) of a structure and the original MPA-based IDA using repeated nonlinear RHA of modal SDF systems.

Process Design for Manufacturing 1.5wt%C Ultrahigh Carbon Workroll: Void Closure Behavior and Bonding Strength (1.5wt%C 초고탄소 워크롤 제조를 위한 단조 공정 설계: 기공압착 및 접합강도 분석)

  • Lim, H.C.;Lee, H.;Kim, B.M.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.269-274
    • /
    • 2013
  • Experiments and numerical simulations of the incremental upsetting test were carried out to investigate void closure behavior and mechanical characteristic of a 1.5wt%C ultra-high carbon steel. The experimental results showed that the voids become quickly smaller as the reduction ratio increases. The simulation results confirmed this behavior and indicated that the voids were completely closed at a reduction ratio of about 40~45% during incremental upsetting. After the completion of the incremental upsetting tests, the process of diffusion bonding was employed to heal the closed voids in the deformed specimens. To check the appropriate temperature for diffusion bonding, deformed specimens were kept at 800, 900, 1000 and $1100^{\circ}C$ for an hour. In order to investigate the effect of holding time for diffusion bonding at $1100^{\circ}C$, specimens were kept at 10, 20, 30, 40, 50 and 60minutes in the furnace. A distinction between closed and healed voids was clearly established using microstructural observations. In addition, subsequent tensile tests demonstrated that complete healing of a closed void was achieved for diffusion bonding temperatures in the range $900{\sim}1100^{\circ}C$ with a holding time larger than 1 hour.

Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part II - Void Closure and Diffusion Bonding (1.9wt%C 초고탄소 워크롤 단조 공정 : Part II - 기공압착 및 확산접합)

  • Kang, S.H.;Lim, H.C.;Lee, H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.463-469
    • /
    • 2013
  • In the previous work, a new forging process design, which included incremental upsetting, diffusion bonding and cogging, was suggested as a method to manufacture 1.9wt%C ultrahigh carbon workrolls. The previous study showed that incremental upsetting and diffusion bonding are effective in closing voids and healing of the closed void. In addition, compression tests of the 1.9wt%C ultrahigh carbon steel revealed that new microvoids form within the blocky cementite at temperatures of less than $900^{\circ}C$ and that local melting can occur at temperatures over $1120^{\circ}C$. Thus, the forging temperature should be controlled between 900 and $1120^{\circ}C$. Based on these results, incremental upsetting and diffusion bonding were used to check whether they are effective in closing and healing voids in a 1.9wt%C ultrahigh carbon steel. The incremental upsetting and diffusion bonding were performed using sub-sized specimens of 1.9wt%C ultrahigh carbon steel. The specimen was deformed only in the radial direction during the incremental upsetting until the reduction ratio reached about 45~50%. After deformation the specimens were kept at $1100^{\circ}C$ for the 1 hour in order to obtain a high bonding strength for the closed void. Finally, microstructural observations and tensile tests were conducted to investigate void closure behavior and bonding strength.

Collapse assessment and seismic performance factors in tall tube-in-tube diagrid buildings

  • Khatami, Alireza;Heshmati, Mahdi;Aghakouchak, Ali Akbar
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.197-214
    • /
    • 2020
  • Diagrid structures have been introduced as a fairly modern lateral load-resisting system in the design of high-rise buildings. In this paper, a novel diagrid system called tube-in-tube diagrid building is introduced and assessed through pushover and incremental dynamic analyses. The main objectives of this paper are to find the optimum angle of interior and exterior diagrid tube and evaluate the efficiency of diagrid core on the probability of collapse comparing to the conventional diagrid system. Finally, the seismic performance factors of the proposed system are validated according to the FEMA P695 methodology. To achieve these, 36-story diagrid buildings with various external and internal diagonal angles are designed and then 3-D nonlinear models of these structures developed in PERFORM-3D. The results show that weight of steel material highly depends on diagonal angle of exterior tube. Adding diagrid core generally increases the over-strength factor and collapse margin ratio of tall diagrid buildings confirming high seismic safety margin for tube-in-tube diagrid buildings under severe excitations. Collapse probabilities of both structural systems under MCE records are less than 10%. Finally, response modification factor of 3.0 and over-strength factor of 2.0 and 2.5 are proposed for design of typical diagrid and tube-in-tube diagrid buildings, respectively.

Applicability of Preconsolidation Pressure Interpretations of Korean Marine Clays (국내 해성점토 지반에 대한 선행압밀압력 평가방법의 적용성)

  • Jeong, Sang-Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.93-101
    • /
    • 2017
  • In this study, a subjective weighting factors were awarded based on some indication of the difficulty of assessing the preconsolidation stress using traditional methods (Casagrande, Onitsuka et al., Silva, Becker et al., Janbu and Karlsrud methods) such as those proposed by Casagrande and Janbu using undisturbed sample obtained from Gwangyang dredged clay with high plasticity located in the southern area of Korean peninsular. These numbers only assess the relative ease of finding preconsolidation stress and say nothing regarding the accuracy of the value. The data were compared with measurements of undrained shear strength using strength incremental ratio, checking where or not the values are in the range of 0.25 to 0.35 (typical values of Korean marine clay) and analyzing standard deviation(degree of variability). The measurements of undrained shear strength were obtained from unconfined compression tests (UCT). When determining preconsolidation stress of Korean marine clay, at first, the work method proposed by Becker et al. and the bilogarithmic method proposed by Onitsuka et al. should be used. In addition, preconsolidation pressure should be estimated using the traditional Casagrande method as a basic of comparison.

Analysis of Two-Span Structures Constructed by Incremental Launching Method (ILM 공법에 의해 시공된 2경간 구조물의 해석)

  • Kim, Sung Hoon;Kim, Bu Kyu;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • This paper presents the structural analysis of two-span structures constructed by incremental launching method to traverse the existing facilities. The structure with a relatively short launching span can not be secure the structural stability caused by excessive deflection and overturning prior to reaching the maximum strength, because the length of the other span is different or the rear structure is not continuous. In order to estimate the stability of the construction stages of deflection and the overturning, the structural analysis was carried out. The parameters of the analysis is launching span ratio of the launching nose and the upper structure, weight ratio and so on. From the analysis result, the effects of parameters were investigated and a deflection formula of the launching nose and the condition of the overturning of structure were proposed.

Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios

  • Mohammadhassani, Mohammad;Suhatril, Meldi;Shariati, Mahdi;Ghanbari, Farhad
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.833-848
    • /
    • 2013
  • Nine rectangular-section of High Strength Concrete(HSC) beams were designed and casted based on the American Concrete Institute (ACI) code provisons with varying of tensile reinforcement ratio as (${\rho}_{min}$, $0.2_{{\rho}b}$, $0.3_{{\rho}b}$, $0.4_{{\rho}b}$, $0.5_{{\rho}b}$, $0.75_{{\rho}b}$, $0.85_{{\rho}b}$, $_{{\rho}b}$, $1.2_{{\rho}b}$). Steel and concrete strains and deflections were measured at different points of the beam's length for every incremental load up to failure. The ductility ratios were calculated and the moment-curvature and load-deflection curves were drawn. The results showed that the ductility ratio reduced to less than 2 when the tensile reinforcement ratio increased to $0.5_{{\rho}b}$. Comparison of the theoretical ductility coefficient from CSA94, NZS95 and ACI with the experimental ones shows that the three mentioned codes exhibit conservative values for low reinforced HSC beams. For over-reinforced HSC beams, only the CSA94 provision is more valid. ACI bending provision is 10 percent conservative for assessing of ultimate bending moment in low-reinforced HSC section while its results are valid for over-reinforced HSC sections. The ACI code provision is non-conservative for the modulus of rupture and needs to be reviewed.

Analytical Performance Evaluation of Structure Reinforced with HRS Damper (고감쇠고무와 강재슬릿의 복합 댐퍼로 보강한 건축물의 해석적 성능평가)

  • Kim, Yu-Seong;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • In this study, an incremental loading test of the HRS(Hybrid Rubber Slit) damper was additionally performed to define the physical characteristics according to the incremental test results, and an analytical study was performed according to the damping design procedure by selecting an example structure. As a result of performing seismic performance evaluation before reinforcement by selecting a RC structure similar to an actual school structure as an example structure, the story drift ratio was satisfied, but some column members collapsed due to bending deformation. In order to secure the seismic performance, the damping design procedure of the HRS damper was presented and performed. As a result of calculating the amount of damping device according to the expected damping ratio and applying it to the example structure, the hysteresis behavior was stable without decrease in strength, and the story drift ratio and the shear force were reduced according to the damping effect. Finally the column members that had collapsed before reinforcement satisfied the LS Level.