• Title/Summary/Keyword: Strength hardening

Search Result 920, Processing Time 0.027 seconds

Fundamental Study on the Strength Development of Cement Paste using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 강도발현에 대한 기초적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.407-415
    • /
    • 2013
  • The purpose of this research is to verify the performance of hardening accelerator in cement paste through mechanical performance evaluation and micro structure analysis on hardening accelerator for development of super high early strength concrete. The research results showed that hardening accelerator produced $Ca(OH)_2$ when hydrated with cement, enhancing the degree of saturation of Ca ion by using differential thermal analysis. Moreover, porosity was reduced rapidly as capillary pores were filled by hydration products of $C_3S$. According to the experiment using hydration measurement testing, when 1% and 3% of accelerator were mixed, hydration rate increased toward the second peak point compared to high early strength cement, before the first peak point disappeared. It turned out that adding accelerator accelerated the hydration rate of cement, especially $C_3S$. The shape of C-S-H is shown depending on the amounts of accelerator added and the production and age of $Ca(OH)_2$ by using SEM to observes hydration products. Therefore, it's evident that hardening accelerator used in this research increases amounts of $Ca(OH)_2$ and accelerates $C_3S$, it is effective for the strength development on early age.

Strength Properties of Ultrarapid-Hardening Acrylic-Modified Concrete (아크릴 개질 초속경 폴리머 시멘트 콘크리트의 강도 특성)

  • Joo, Myung-Ki;Noh, Byung-Chul;Kim, Young-Sang;Choi, Kyu-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.945-948
    • /
    • 2008
  • The effects of polymer-cement ratio on strength properties of ultrarapid-hardening acrylic-modified concretes. As a result, the flexural and tensile strengths of ultrarapid-hardening acrylic-modified concretes increase with increasing of polymer-cement ratio. In particular, the acrylic-modified concretes with a polymer-cement ratio of 20% provide approximately 1.5 times higher flexural and tensile strengths than unmodified concretes. Such high strength development is attributed to the high flexrul and tensile strengths of arcylic polymer and the improved bond between cement hydrates and aggregates because of the addition of acrylic polymer. However, the compressive strengths of ultrarapid-hardening acrylic-modified concretes decrease with increasing of polymer-cement ratio.

  • PDF

Influence of Cement Matrix's Compressive Strength and Replacement of Expansive Admixture on the Mechanical Properties of Synthetic Polyethylene (PE) Fiber-Reinforced Strain-Hardening Cement-Based Composites (SHCCs) (압축강도와 팽창재 대체에 따른 폴리에틸렌 합성섬유로 보강된 변형 경화형 시멘트 복합체의 역학적 특성)

  • Song, Young Jae;Yun, Hyun Do;Min, Byung Sung;Rokugo, Keitetsu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • In order to improve the dimensional stability and mechanical performance of cement-based composites, the effect of an expansive admixture based on calcium sulphoaluminate (CSA) on the shrinkage and mechanical properties of strain-hardening cement-based composite (SHCC), which exhibits multiple cracks and pseudo strain-hardening behavior in the direct tension, is investigated. Polyethylene fibers reinforced SHCC mixtures with three levels (30, 70, and 100MPa) of compressive strength were compared through free shrinkage, compressive strength, flexural strength, and direct tensile strength measurements. The SHCC mixtures were cast with and without replacing 10% of Portland cement content with CSA admixture. According to test results, CSA admixture is effective in reducing shrinkage of SHCC material. SHCC mixture with CSA admixture exhibited a little higher strength than companion mixture without CSA admixture.

A Study on the Initial Shear Strength Characteristics of Sudden Gelation Grout (순결형 그라우트의 초기 전단강도 특성에 대한 연구)

  • Heo, Hyung-Seok;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.33-44
    • /
    • 2020
  • In order to analyze the shear strength characteristics of the grout with sudden gelation in the pre-hardening state, the viscosity of the mixture and the indoor vane shear test were performed. The grout was prepared according to the water-cement (w/c) ratio and the shear strength test was conducted. The plastic-state shear strength of grout was affected by the w/c ratio, so the lower the w/c ratio, the higher the initial shear strength was, and the longer the curing time was, the higher the shear strength was. The maximum shear strength occurred at the faster rotation angle as the higher shear strength was developed, and the lower shear strength occurred at the larger rotation angle. In addition, it was confirmed that the pre-hardening grout rapidly decreased in strength after the maximum shear strength was gained, and converged at a certain level after the rotation angle of the vane blade was about 70° to 90°.

A Study on the Mechanical Properties by High-Frequency Induction Hardening of SCM440 Steel (고주파 담금질에 의한 SCM440강의 기계적 특성에 관한 연구)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Kim, Tae-Il;Lee, Mun-Yong;Kim, Dong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.74-80
    • /
    • 2009
  • Surface hardening treatments, such as using the high-frequency induction hardening method, are widely used to increase the fatigue life and prevent the failure of materials by locally increasing the surface hardness. This method, in particular, brings an improvement in static strength by compressive residual surface stress due to the hardening. In this study, the mechanical properties of high-frequency induction hardened SCM440 steel were investigated. These results were also compared with those for base metal and a Q/T (tempering after quenching) treatment specimen. The test results showed that partially high-frequency induction hardened SCM440 steel specimens were more improved in static strength, surface hardness, fatigue limit, and anti-wear than the base metal and Q/T treatment specimens. In particular, the fatigue limit of the high-frequency induction hardened SCM440 steel increased by more than about 52% compared to that of base metal and by about 25% compared to that of the Q/T specimen.

Improvement Effectiveness of Soft Ground Using Hardening Agent (고화재 혼합처리를 이용한 연약지반개량효과)

  • Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.59-64
    • /
    • 2001
  • Recently, the application of shallow mixing method using hardening agent has increased because of the advantage of securing trafficability, reducing the working period, solving environmental problems caused by dumped and replaced soil, etc. In this paper, three types of representative hardening agents in Korea are used to achieve the optimum of ground improvement. 1he unconfined compression tests are carried out with specimens under various mixing ratios and curing periods of hardening agent to assess the stabilizing ability. The unconfined strengths on site were estimated with various mixing ratios based on the results of the laboratory tests. It was estimated that the improved strength on site was higher than that of the required strength $5.0kgf/cm^2$.

  • PDF

Comparison of Springback Modes in the Stamping Process of an S-rail with HSS according to the Hardening Model (경화모델에 따른 고강도강판 S-rail 성형공정에서의 스프링백 모드 비교)

  • Choi, B.H.;Lee, J.W.;Kim, S.H.;Lee, M.G.;Kim, H.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.30-35
    • /
    • 2013
  • In this study, springback amounts of an S-rail are quantitatively compared according to the hardening model using a finite element simulation for the stamping process with high strength steels. For comparison of the hardening models, two types of hardening models were investigated. The two models were isotropic hardening and kinematic hardening. For the analysis with kinematic hardening, the Yoshida-Uemori model was selected. Five kinds of springback modes were measured at designated sections and a comparison was made between the experiment and the analyses with two types of hardening models. The analysis results show that the springback in the flange and the wall curl are predicted more accurately with a kinematic hardening model.

Study on the Development of Super-High-Early-Strength Mortar Using the Hardening catalyst and High early strength cement (조강시멘트를 사용한 초조강 모르타르 개발에 관한 연구)

  • Cho, In-Sung;Hur, Yeon-Ok;Min, Tae-Beom;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.217-219
    • /
    • 2012
  • In this study, the experiment was conducted in the level of mortar as one of the basic studies on pre-cast concrete which acceleration curing is not done. This study has the purpose to develop the strength of mortar into 20MPa within 6 hours in the condition of room temperature using admixtures which can accelerate C3S hydration reaction. In this experiment, W/C was fixed into 20%, PCE which can stimulate C3S was used as an accelerating admixture. From the results of this experiment, maximum content of accelerating admixture was 1%. Also, as more than 20MPa was measured through 6-hour compressive strength, it can be known that strength can be developed without steam-curing.

  • PDF

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김규용;최경렬;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete ) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was Increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.