• Title/Summary/Keyword: Strength equation

Search Result 1,447, Processing Time 0.025 seconds

Comparison Study on Nondestructive Strength Equation Based on Probability for Bridges (확률론적 방법을 적용한 도로교량의 비파괴 압축강도식 평가)

  • Kim, Hun-Kyom
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.39-46
    • /
    • 2018
  • PURPOSES: This study is to estimate nondestructive strength equation based on probability for bridges using field test data. METHODS : In this study, a series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges, based on the test results of the in-depth inspection, and the estimated strengths by means of the nondestructive strength equations are analyzed and compared with results of the core specimen strengths. RESULTS : According to results of analyses, In case of standard design compressive strength of concrete is 18MPa, 21MPa, similar reliability of RILEM equation were 0.89~0.90, but in case of standard design compressive strength of concrete is 35MPa, 40MPa were 0.4~0.56. According to standard design compressive strength of concrete is 40MPa, similar reliability of ultrasonic pulse velocity method equation were 0.56. CONCLUSIONS :RILEM equation had high similar reliability than other equation in case of standard design compressive strength of concrete is 18MPa, 21MPa, but had low similar reliability than other equation in case of standard design compressive strength of concrete is 35MPa, 40MPa. and ultrasonic pulse velocity method equation had low similar reliability than other equation in case of standard design compressive strength of concrete is 40MPa.

Deduction Equation of Shear Strength of Steel Fiber Reinforced High Strength Concrete Beams (강섬유 보강 고강도 콘크리트 보의 전단강도 추정식(구조 및 재료 \circled2))

  • 조선정;박종건;곽계환
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.253-258
    • /
    • 2000
  • The purpose of this paper is to propose the deduction equation of shear strength of high strength reinforced concrete beams input steel fibrous. To propose the deduction equation of shear strength, we studied high reasonable verification by comparing proposal equation with other researches such as equation of ACI code 318-95 or equation of Zsutty. To propose the deduction equation of shear strength, regression analysis was done using MINITAP program. Finally, it has been tried to make an improvement of brittleness quality of high strength concrete which has been weak points and it is convinced the result by increase of deflection and strain about loads.

  • PDF

A Study on Application of Non-Destructive Equation for the Estimation of Concrete Strength (콘크리트의 압축강도 추정을 위한 비파괴시험식의 활용성 검토에 관한 연구)

  • Kim, Moo-Han;Kwon, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.129-136
    • /
    • 1999
  • In this paper, the new non-destructive equation will be proposed and evaluated in comparison to the other foreign's non-destructive equation. Through the comparisons cores strength of mock structure with compressive strength obtained from new non-destructive equation ; rebound hammer, ultra-sonic pulse velocity and combined method, it will be analyzed about application of non-destructive equation. The results are following. The new non-destructive equations follow ; (1) $F_c=9.5R{\cdot}N+62.5$ (2) $F_c=243Vp-739$ (3) $F_c=8.1R_o+205.3V_p-802$ where, $F_c$ : Compressive Strength, $R_o$ : Rebound Number. $V_p$ : Ultra-Sonic Pulse Velocity Trough the result of mock structure test, the combined method is superior to rebound method and ultra-sonic pulse velocity method in the estimation of concrete strength. In order to apply the non-destructive equation of concrete strength to the structures, it is necessary that we should be made process study on the non-destructive equation for estimation of concrete strength in the range, time and strength of application under long-term.

  • PDF

Prediction of Shear Strength in High-Strength Concrete Beams Considering Size Effect (크기효과를 고려한 고강도 콘크리트 보의 전단강도 예측식 제안)

  • 배영훈;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.878-883
    • /
    • 2003
  • To modify some problems of ACI shear provisions, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear function in deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, namely d, , ρ, f/sub c/' and aid, about 250 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim & Park's equation and Zsutty's equation. While proposed shear equation is simpler than other shear equations, it is shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practice shear design.

  • PDF

Flexural Strength of Steel Fiber Reinforced Concrete Beams (강섬유보강 콘크리트보의 휨강도에 관한 연구)

  • 김우석;백승민;곽윤근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.695-700
    • /
    • 2001
  • The objective of this study is to evaluate the flexure strength of steel fiber reinforced concrete beams and the effect of the adding steel fiber to flexural strength, and is to compare the proposed equation with the previous equation for predicting the flexural strength of fiber reinforced concrete beams. Based on earlier published studies and tests, predictive equation is proposed for evaluating the flexural strength of steel fiber reinforced concrete beams. The proposed equation gave good prediction for the flexural strength of the tested beams.

  • PDF

A Study on the Application of Non-Destructive Testing Equation for the Estimation of Compressive Strength of High Strength Concrete (고강도콘크리트의 압축강도 추정을 위한 비파괴시험식의 적용성에 관한 연구)

  • Kim, Moo-Han;Choi, Se-Jin;Kang, Suk-Pyo;Kim, Jae-Hwan;Jang, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • Recently, it is being studied on the high strength concrete in many laboratories and being applied to the construction field actually. But non-destruction testing equation that to be proposed about normal strength concrete in Japan has been using because the systematic study results for the estimation of compressive strength of high strength concrete do nit exist. So it is essential to suggest the non-destruction testing equation for the estimation of compressive strength of high strength concrete. This is an experimental study to analyze and investigate the non-destruction testing equation for the estimation of compressive strength of high strength concrete. The results are as follows; The relation between rebound number, pulse velocity and compressive strength of high strength concrete have lower coefficient than combined method of rebound number and pulse velocity. Also new non-destructive testing equation for the estimation on the compressive strength of high strength concrete was suggested in this study, and it is considered that these equations have possibility to be applied in domestic construction field.

Size Effect on Shear Strength of Reinforced High Strength Concrete Beams (고강도 철근콘크리트 보의 전단강도에 관한 크기효과)

  • 김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.155-160
    • /
    • 1992
  • In this study , the size effect on diagonal shear failure of reinforced high strength concrete beams was investigated, For this purpose, ten singly reinforced high strength concrete beams without web reinforcement were tested for five different dimensions of effective depth which were varied from 67mm to 915mm. The compressive strength of concrete used in this study was 53.7 MPa. One type of reinforcing bar with nominal yield strength of 400 MPa was used. Test results were analyzed and compared with strength predicted by ACI code equation, Zutty's equation and Bazant &Kim's equation. As the results, ACI code equation was seriously unconservative for beams with d of 915mm. Bazant & Kim's equation predicted well the trend of test data. Within the scope of this study, there was no clear difference in size effect with variation of compressive strength of concrete.

  • PDF

A study on the Strength Interaction Equation of H Beams with Web Openings (유공(有孔) H형강(型鋼)보의 강도식(强度式)에 관한 연구(硏究))

  • Park, Jong Won;Jung, Jae Gil;Sin, Young Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.177-189
    • /
    • 2001
  • It is a common practice to cut openings in the beam webs for the passage of service ducts or pipes in steel building structures. The objective of this paper is to propose a strength interaction equation of H beams with web holes based on the plastic collapse mechanism. In the development of the equation, the basic assumptions used in the previous strength equations and their limitations were investigated. Based on the investigation, a new equation which is simple and easy to understand was proposed. The reliability of the proposed method was evaluated using the test results of previous research made so far. Comparison of the ultimate strength by the proposed equation with previous test results showed that the proposed equation gives more reasonable prediction than the previous strength equations which are commonly used in practice.

  • PDF

Development of Empirical Equation for Prediction of Minimal Track Buckling Strength (곡선부 궤도의 최소좌굴강도 추정식의 개발)

  • Yang, Sin-Chu;Kim, Eun;Lee, Jee-Ha;Shin, Jung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.475-480
    • /
    • 2001
  • In this study, a empirical equation which can be feasibly used to evaluate minimal track buckling strength without exact numerical analysis is presented. Parameter studies we carried out to investigate the effects of the individual factor on buckling strength. In order to simulate track buckling in the field as precisely as possible, a rigorous buckling model which accounts for all the important parameters is adopted. A empirical equation for prediction of minimal track buckling strength is derived by taking nonlinear regression of data which are obtained from numerical analyses. Its characteristics and applicability are investigated by comparing the results by the presented equation with the one by the equation which was presented in japan, and is frequently using in korea when designing track structure.

  • PDF

A Proposal of an Elastic Modulus Equation for High-Strength and Ultra High-Strength Concrete

  • Jang, II-Young;Park, Hoon-Kyu;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.43-48
    • /
    • 2006
  • This paper presents an elastic modulus equation more appropriate for predicting the elastic modulus of structural materials designed for and made of high- and ultra high-strength concrete under current domestic situation in Korea. In order to validate and assess the proposed elastic modulus equation, more than 400 laboratory test data available in the domestic literature on compressive strength of concrete in the range between 400 to 1,000 $kgf/cm^2$ were used and analyzed statistically. Comparison analyses of the proposed elastic modulus equation with previously suggested equations of ACI363R, CEB-FIP, NS3473 and New-RC are also presented to demonstrate its applicability in domestic practice.