• Title/Summary/Keyword: Strength development model

Search Result 700, Processing Time 0.028 seconds

Development of Job Satisfaction Measurement Model Using Structural Equation Model (구조방정식모델을 이용한 직무만족도 평가모형 개발)

  • Chun, Young-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.1
    • /
    • pp.90-97
    • /
    • 2011
  • The purpose of this study is to analyze various factors comprising a job satisfaction; determine possible factors that affects job satisfaction. Job satisfaction model is designed to evaluate major factors, such as job stress and strength, and to assess relationship between these factors. Partial least squares algorithm is used to develop a job satisfaction measurement model. To evaluate validity of developed model, survey data of health insurance review and assessment service is to applied.

A Study on Appropriacy of Cement Constant Considering Strength Development of Domestic Concrete (국내 콘크리트 강도 발현을 고려한 시멘트 상수의 적절성 연구)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Lee, Kwang-Myong;Kim, Ji-Sang;Jeong, Sang-Hwa;Moon, Jae-Heum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.321-322
    • /
    • 2010
  • This paper suggest the new strength development model of concrete according to elapsed time for the performance model of domestic material.

  • PDF

Prediction of Compressive Strength of Fly Ash Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 플라이애시 콘크리트의 압축강도 예측)

  • 한상훈;김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.947-952
    • /
    • 2001
  • The prediction model is proposed to estimate the variation of compressive strength of fly ash concrete with aging. After analyzing the experimental result with the model, the regression results are presented according to fly ash replacement content and water/cement ratio. Based on the regression results, the influence of fly ash replacement content and water/cement ratio on apparent activation energy was investigated. According to the analysis, the model provides a good estimate of compressive strength development of fly ash concrete with aging. As the fly ash replacement content increases, the limiting relative compressive strength and initial apparent activation energy become greater. The concrete with water/cement ratio smaller than 0.40 shows that the limiting relative compressive strength and apparent activation energy are nearly constant according to water/cement ratio. But, the concrete with water/cement ratio greater than 0.40 has the increasing limiting relative compressive strength and apparent activation energy with increasing water/cement ratio.

  • PDF

Towards improved models of shear strength degradation in reinforced concrete members

  • Aschheim, Mark
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.601-613
    • /
    • 2000
  • Existing models for the shear strength degradation of reinforced concrete members present varied conceptual approaches to interpreting test data. The relative superiority of one approach over the others is difficult to determine, particularly given the sparseness of ideal test data. Nevertheless, existing models are compared using a suite of test data that were used for the development of one such model, and significant differences emerge. Rather than relying purely on column test data, the body of knowledge concerning degradation of concrete as a material is considered. Confined concrete relations are examined to infer details of the degradation process, and to establish a framework for developing phenomenologically-based models for shear strength degradation in reinforced concrete members. The possibility of linking column shear strength degradation with material degradation phenomena is explored with a simple model. The model is applied to the results of 7 column tests, and it is found that such a link is sustainable. It is expected that models founded on material degradation phenomena will be more reliable and more broadly applicable than the current generation of empirical shear strength degradation models.

Development of Estimation of Model for Mechanical Properties of Steel Fiber Reinforced Concrete according to Aspect Ratio and Volume Fraction of Steel Fiber (강섬유의 형상비와 혼입률에 따른 강섬유 보강 콘크리트 보의 역학적 특성 추정 모형 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Sung, Bai-Kyung;Jang, Hwa-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.85-94
    • /
    • 2006
  • Practially useful method of steel fiber for construction work is presented in this study. The most important purpose of this study is to develop a model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus, and splitting strength were performed with self-made cylindrical specimens of variable aspect ratios and volume fractions. The experiment showed that compressive strength was not in direct proportion to volume fraction which doesn't seem to have great influence over compressive strength. However, splitting strength showed almost direct proportion to aspect ratio and volume fraction. Improvement of optimal efficiency was confirmed when the aspect ratio was 70. Experiments on flexural strength, fracture energy, and characteristic length were carried out with self-manufactured beams with notch. As a result, increases of flexural strength, fracture energy, and characteristic length according to increase of volume fraction tend to be prominent when aspect ratio is 70. The steel fiber improves concrete to be more ductile and tough. Moreover, regression analysis was the performed and predictable model was developed after determining variables. With comparison and analysis of suggested estimated values and measured data, reliance of the model was verified.

Finite Element Model based on Strain Tests for Predicting Bending Strength of Small Gears for Aircraft

  • Kim, Taehyung;Seok, Taehyeon;Seol, Jin-woon;Lee, Byung-ho;Kwon, Byung-gi;Choi, Jong-yoon
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.91-99
    • /
    • 2020
  • This study proposes a finite element (FE) model for predicting the bending strength of small gears used in electro-mechanical actuators for aircraft. First, a strain gauge was attached to the tooth root of test gear, and the strain was measured. Subsequently, the FE model was applied to calculate the strain of the test gear, and the modeled strain was compared with the experimental strain. The results confirmed that the FE strain was very close to the experimental strain and the FE model was valid. This FE model was extended to the bending strength analysis of several small gear tooth models. The bending strengths of all the tooth models were almost identical to the ISO theoretical bending strength. Finally, the FE model was validated and the reliability of the modeled bending strength was evaluated through the strain measurement experiment.

Curvature ductility of confined HSC beams

  • Bouzid Haytham;Idriss Rouaz;Sahnoune Ahmed;Benferhat Rabia;Tahar Hassaine Daouadji
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.579-588
    • /
    • 2024
  • The present paper investigates the curvature ductility of confined reinforced concrete (RC) beams with normal (NSC) and high strength concrete (HSC). For the purpose of predicting the curvature ductility factor, an analytical model was developed based on the equilibrium of internal forces of confined concrete and reinforcement. In this context, the curvatures were calculated at first yielding of tension reinforcement and at ultimate when the confined concrete strain reaches the ultimate value. To best simulate the situation of confined RC beams in flexure, a modified version of an ancient confined concrete model was adopted for this study. In order to show the accuracy of the proposed model, an experimental database was collected from the literature. The statistical comparison between experimental and predicted results showed that the proposed model has a good performance. Then, the data generated from the validated theoretical model were used to train the artificial neural network (ANN) prediction model. The R2 values for theoretical and experimental results are equal to 0.98 and 0.95, respectively which proves the high performance of the ANN model. Finally, a parametric study was implemented to analyze the effect of different parameters on the curvature ductility factor using theoretical and ANN models. The results are similar to those extracted from experiments, where the concrete strength, the compression reinforcement ratio, the yield strength, and the volumetric ratio of transverse reinforcement have a positive effect. In contrast, the ratio and the yield strength of tension reinforcement have a negative effect.

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

Assessment of Development and Opertation for Maritime Leisure in Mokpo Port using SWOT&AHP (목포항 요트산업 개발과 운영 주체 선정)

  • Jang, Woon-Jae;Keum, Jong-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.451-456
    • /
    • 2005
  • This paper proposes an evaluation model to assessment of development and operation for maritime leisure in Mokpo Port.. The proposed model is combination of SWOT(Strength, Weakness, Opportunity, Threat) and AHP(Analytic Hierarchy Process) to evaluate development and operation for maritime leisure. The evaluation hierarchical structure is structured by ISM(Interpretive structural modeling) and composed of five level. At the third level, It combine SWOT into the assessment system. Strength and Weakness are internal factors. Opportunities and threats are external factors. There are economic and maritime leisure development in the model. There are three development and operation investment as Third-Sector, company, local organization. According to the results, the participants perceive prefer to strength and opportunity and found that the priority for the development and operation for maritime leisure of Third-Sector.

  • PDF

Assessment of Development and Operation for Maritime Leisure In Mokpo Port using SWOT&AHP (SWOT&AHP을 이용한 목포항 요트산업 개발과 운영 주체 평가)

  • Jang Woon-Jae;Park Sung-Hyun;Keum Jong-Soo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.715-721
    • /
    • 2005
  • This paper proposes an evaluation model to assessment of development and operation for maritime leisure in Mokpo Port.. The proposed model is combination of SWOT(Strength, Weakness, Opportunity, Threat} and AHP(Analytic Hierarchy Process) to evaluate development and operation for maritime leisure. The evaluation hierarchical structure is structured by ISM(interpretive structural modeling} and composed of five level. At the third level, It combine SWOT into the assessment system Strength and Weakness are internal factors. Opportunities and threats are external factors. There are economic and maritime leisure development in the model. There are three development and operation investment as Third-Sector, company, local organization. According to the results, the participants perceive prefer to strength and opportunity and found that the priority for the development and operation for maritime leisure of Third-Sector.