• Title/Summary/Keyword: Strength decrease

Search Result 2,831, Processing Time 0.025 seconds

An Evaluation on the Performance of Recyclable Cement by Micron Separating Method (미세분급 방법 개선에 의한 재생시멘트의 성능 평가)

  • Hong, Young-Tae;Kim, Sae-Young;Ko, Eun-Hye;Oh, Sang-Gyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.39-42
    • /
    • 2006
  • In this study, there is purpose that is on a concrete defect happen from aggregate minute's particle mixing in process that make waste concrete as recyclable cement puts to practical use constructing basic data for design of mix proportion used recyclable cement and solves strength fall problem using micron separator, and does general recyclable cement high quality. As a result of X-ray diffraction(XRD) of rater HR-C than NR-C is aware that it come out the micron-separating to decrease the $SiO_2$-peak below 50%. And a construction field which apply for strength's $24{\sim}28MPa$ HR-C in order to realize NR-C of 44% and 51%. Recycle concrete capacity through improved recycle cement of manufacturing technique by micron-separating's new distribution more better improvement. Therefore, in this study, it need to more various study a recycle cement of high quality for reasonable and utility recycling than disposal concrete.

  • PDF

Cyclic test for beam-to-column abnormal joints in steel moment-resisting frames

  • Liu, Zu Q.;Xue, Jian Y.;Peng, Xiu N.;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1177-1195
    • /
    • 2015
  • Six specimens are tested to investigate the cyclic behavior of beam-to-column abnormal joints in steel moment-resisting frames, which are designed according to the principle of strong-member and weak-panel zone. Key parameters include the axial compression ratio of column and the section depth ratio of beams. Experimental results indicate that four types of failure patterns occurred during the loading process. The $P-{\Delta}$ hysteretic loops are stable and plentiful, but have different changing tendency at the positive and negative direction in the later of loading process due to mechanical behaviors of specimens. The ultimate strength tends to increase with the decrease of the section depth ratio of beams, but it is not apparent relationship to the axial compression ratio of column, which is less than 0.5. The top panel zone has good deformation capacity and the shear rotation can reach to 0.04 rad. The top panel zone and the bottom panel zone don't work as a whole. Based on the experimental results, the equation for shear strength of the abnormal joint panel zone is established by considering the restriction of the bottom panel zone to the top panel zone, which is suitable for the abnormal joint of H-shaped or box column and beams with different depths.

A study on the mechanical properties of austempered low-alloy ductile cast iron (오스템퍼링한 低合金 球狀黑鉛鑄鐵의 機械的 性質에 관한 硏究)

  • 강명순;박흥식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1296-1302
    • /
    • 1988
  • The study has been carried out under various experimental conditions to investigate mechanical properties by the transformation conditions of austempered low-alloy ductile cast iron. The amount of retained austenite and bainite after quenching was determined by the X-ray diffractometer and the point counting method and which the microstructure was investigated by the S.E.M. The mechanical properties of austempered low-alloy ductile cast iron can be varried over a comparatively wide range by changing the transformation conditions. During isothermal transformation of austenite in the bainite region, low-alloy ductile cast iron austempered at holding time of 40 minute has the maximum volume fraction(24%) of retained austenite in the cast iron matrix and which optimum values of mechanical properties correspond to the maximum amount of retained austenite, which falls with decreasing transformation temperature. The low values of both tensile strength and elongation in the initial stage of bainite transformation can be explained by premature fracture of tensile specimens and the tensile strength, hardness and elongation do not change considerably after a certain period. With a decreasing transformation temperature the tensile strength increase while the elongation decrease, especially the elongation has the maximum value at temperature $370^{\circ}C$.

A Study on Hydration Heat Properties and Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 대량 사용한 콘크리트의 수화열특성 및 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash was used at the same time. It was used that the adiabatic temperature rise of concrete about the mass member which had been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive strength's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the time to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

A experimental study on the long-term response of high-strength Steel-Fiber Reinforced Concrete (고강도 강섬유 보강 콘크리트의 장기거동 특성에 관한 실험적 연구)

  • Seo Jong-Myeong;Kim Jae-Ki;Lee Joo-Ha;Yoon Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.337-340
    • /
    • 2004
  • In recent days, the beneficial effects of using fiber reinforced concrete, especially Steel Fiber Reinforced Concrete, have been on the rise. However, few studies on long-term behavior of SFRC are executed in spite of great demand of SFRC. The fact that SFRC is far better than NRC in various properties such as tensile strength, ductility, flexural toughness has been certified by many researchers. And, those advantages can be also applied to decrease the structures deterioration induced by creep and shrinkage. Furthermore, even though it is fact that SFRC is generally used in joint members to distribute concentrated stresses by fibers, SFRC is treated as NRC in designing especially for long-term behavior of structures. So this paper is about a study on the long-term response of SFRC applied to HPC about 40MPa. Therefore, in this paper, the test results of eighteen high-strength concrete specimens and steel fiber-reinforced concrete specimens, with steel fiber content of $1\%$ by volume were presented. The test result shows that SFRC is advantageous rather than NRC in long-term response.

  • PDF

An Experimental Study on the Properties of Durability of High Strength Concrete Using Domestic.Foreign Meta-kaolin (국내.외산 메타카올린을 사용한 고강도 콘크리트의 내구특성에 관한 실험적 연구)

  • Lee, Kang-Pil;Lee, Seung-Min;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.239-242
    • /
    • 2009
  • As the high-rise building increase due to the gravitation of population to big cities recently, it requires high quality and high performance of Concrete. As a result, people are keenly interested in Meta-kaolin as new admixture favorable from an economic perspective, which has strength and endurance with admixture at the same level like Silica-fume. Accordingly, as to Meta-kaolin, this study was to set by three levels like domestic one, foreign one, and Silica-fume, the water-binding material ratio 25%, and four level substitute like 0, 10, 20, and 30(%) in order to compare and analyze the quality durability of high-concrete according to the substitute of Meta-kaolin applicable with replacement of Silica-fume. As a result of performing experiment it was found that when water-binding material ratio increases, resistance of neutralization, carbonation, salt damage and sulfate decrease, and when replacement ratio of mineral admixture increases, depth of accelerating carbonation gets greater. Also, the combination of SF and MK-B favored resistance to chloride ion penetration better than MK-A, and it was found that when replacement ratio of binding material increases, the resistance to sulphuric acid increases. Therefore, based on this study, it was understood that meta-kaolin is useable in replacement of silicafume.

  • PDF

Roller compacted concrete pavements reinforced with steel and polypropylene fibers

  • Madhkhan, Morteza;Azizkhani, Rasool;Torki, Mohammad E.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.149-165
    • /
    • 2011
  • In this paper, the effects of both pozzolans and (steel and poly-propylene) fibers on the mechanical properties of roller compacted concrete are studied. Specimens for the experiments were made using a soil-based approach; thus, the Kango's vibration hammer was used for compaction. The tests in the first stage were carried out to determine the optimal moisture requirements for mix designs using cubic $150{\times}150{\times}150$ mm specimens. In the tests of the second stage, the mechanical behaviors of the main specimens made using the optimal moisture obtained in the previous stage were evaluated using 28, 90, and 210 day cubic specimens. The mechanical properties of RCC pavements were evaluated using a soil-based compaction method and the optimum moisture content obtained from the pertaining experiments, and by adding different percentages of Iranian pozzolans as well as different amounts of steel fibers, each one accompanied by 0.1% of poly-propylene fibers. Using pozzolans, maximum increase in compressive strength was observed to occur between 28 and 90 days of age, rupture modulus was found to decrease, but toughness indices did not change considerably. The influence of steel fibers on compressive strength was often more significant than that of PP fibers, but neither steel nor PP fibers did contribute to increase in the rupture modulus independently. Also, the toughness indices increased when steel fibers were used.

Elastic Wave Characteristics of Incoloy 825 with Different Solution Treatment Temperature and Aging Time (용체화처리 온도 및 시효 시간이 다른 Incoloy 825의 탄성파 특성)

  • Lee, Seong-Gu;Choi, Byoung-Chul;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.261-269
    • /
    • 2021
  • This study was evaluated the elastic wave properties according to tension of Incoloy 825 alloy with different solution treatment temperature and aging time. Solution treatment was carried out at 700, 800, 900, and 1000 ℃ for 1 hour, and aging was carried out at 700 ℃ for 1, 5, 10, and 30 hours. As the solution treatment temperature increased, the tensile strength decreased and the elongation increased. However, as the aging time increased, the tensile strength increased and the elongation decreased. The dominant frequency decreased as the solution treatment temperature increased, but increased as the aging time increased. The dominant frequency according to the solution treatment and aging time increased as the tensile strength increased, but increased despite the decrease in elongation.

Thermomechanical behavior of alkali-activated slag/fly ash composites with PVA fibers exposed to elevated temperatures

  • Kim, J.S.;Lee, H.K.
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2021
  • The present study fabricated polyvinyl alcohol (PVA) fiber-reinforced alkali-activated slag/fly ash (AASF) composites with varying mixture ratios of slag and fly ash. The thermomechanical behaviors of the AASF composites exposed to 200, 400, 600, or 800℃ were evaluated by means of compressive strength test, visual observation, and fire resistance tests. X-ray diffractometry, mercury intrusion porosimetry, and thermogravimetry tests were performed to analyze the microstructure change of the AASF composites upon exposure to high temperatures. Specimens exhibited a gradual strength loss up to 600℃, while also showing a significant decrease in the strength above 600℃. The fire resistance test revealed the occurrence of an inflection point as indicated by an increase in the internal temperature at around 200℃. In addition, specimens showed the dehydration of C-S-H gel, the presence of åkermanite, gehlenite, and anorthite upon exposure to 800℃, which is associated with the formation of macropore population with pores having diameters of 1-3 ㎛ and 20-40 ㎛. Visual observation indicated that the PVA fibers mitigated the cracking and/or spalling of the specimens upon exposure to 800℃.

Effects of interface angles on properties of rock-cemented coal gangue-fly ash backfill bi-materials

  • Yin, Da W.;Chen, Shao J.;Sun, Xi Z.;Jiang, Ning
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.81-89
    • /
    • 2021
  • Uniaxial compression tests were conducted on sandstone-CGFB composite samples with different interface angles, and their strength, acoustic emission (AE), and failure characteristics were investigated. Three macro-failure patterns were identified: the splitting failure accompanied by local spalling failure in CGFB (Type-I), the mixed failure with small sliding failure along with the interface and Type-I failure (Type-II), and the sliding failure along with the interface (Type-III). With an increase of interface angle β measured horizontally, the macro-failure pattern changed from Type-I to Type-II, and then to Type-III, and the uniaxial compressive strength and elastic modulus generally decreased. Due to the small sliding failure along with the interface in the composite sample with β of 45°, AE events underwent fluctuations in peak values at the later post-peak failure stage. The composite samples with β of 60° occurred Type-III failure before the completion of initial compaction stage, and the post-peak stress-time curve initially exhibited a slow decrease, followed by a steep linear drop with peaks in AE events.