• Title/Summary/Keyword: Strength correction

Search Result 223, Processing Time 0.023 seconds

Fracture energy and tension softening relation for nano-modified concrete

  • Murthy, A. Ramachandra;Ganesh, P.;Kumar, S. Sundar;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1201-1216
    • /
    • 2015
  • This paper presents the details of size independent fracture energy and bi-linear tension softening relation for nano modified high strength concrete. Nano silica in powder form has been used as partial replacement of cement by 2 wt%. Two popular methods, namely, simplified boundary effect method of Karihaloo et al. (2003) and RILEM (1985) fracture energy with P-${\delta}$ tail correction have been employed for estimation of size independent fracture energy for nano modified high strength concrete (compressive strength ranges from 55 MPa to 72 MPa). It is found that both the methods gave nearly same values, which is an additional evidence that either of them can be employed for determination of size independent fracture energy. Bi-linear tension softening relation corresponding to their size independent fracture energy has been constructed in an inverse manner based on the concept of non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams.

Isokinetic Evaluation of Knee Flexors and Extensors on the Effect of Gravity (중력의 영향에 따른 슬관절 굴곡근과 신전근의 등속성운동 평가)

  • Chae Yun-Won;Jeong Dong-Hun;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.10 no.1
    • /
    • pp.45-52
    • /
    • 1998
  • Since isokinetic concise can give an evaluation of muscle strength with great accuracy and objectively, it is widely used as the one of the important methods for evaluation of muscle performance. The purpose of this investigation was to compare values uncorrected for gravity with values corrected for gravity and to determine the effect of making this correction on knee flexors and extensors at three speeds. This investigation measured values isokinetically at $60^{\circ}/sec,\;120^{\circ}/sec,\;and\;180^{\circ}/sec$ in 14 male and 17 fermale university students. The gravity effect torque(GET) is the torque resulting from the effect of gravity on the combined weight of the leg and dynamometer arm. The GET was added to the measured extensors peak torque and subtraced from the flexors peak torque to yield gravity corrected values. Failure to consider GET greatly underetimated extensors torque and overtestimated flexors torque. Physical therapists must remember the importance of making the gravity correction in patients with reduced torque output where the gravitational torque is a greater percentage of the measured torque to ascertain correctly the relative strength of antagonists inversely affected by gravity.

  • PDF

The Effects of Scapular Posture Correction Taping in Painful with le Breast Cancer Women (견갑골 자세교정 테이핑이 유방암 절제술을 한 여성의 통증에 미치는 영향)

  • Lee, Min-ji;Jung, Min-keun
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.23 no.1
    • /
    • pp.31-41
    • /
    • 2017
  • Background: The purpose of this study was investigate the effects of scapular posture correction taping in painful shoulders with breast cancer women. Method: This study was carried out with a total 35 breast cancer survivors. The subjects were randomized into women a breast cancer taping group (BT, n=15), a breast cancer posture group (BP, n=16). Outcomes such as the Quadruple Visual Analogue Scale, the Shoulder Pain and Disability Index, the muscle strength, and the Quality of Life Questionnaire-cancer were measured before the training and at 4 weeks and 12 weeks after intervention. Result: There were significant variations shoulder pain, dysfunction and Range of Motion among the groups and between points in time (p<.05). However, there was no significant difference upper extremity posture between BT and BP. There were significant variations all ROM muscle strength between the groups and between points in time (p<.05). Conclusion: Applying taping treatment to breast cancer patients proved to decrease in pain and significant in dysfunction. There were significant increase in range of motion.

  • PDF

Assignment of the Allowable Design Values for Domestic Softwood Structural Lumber - Structural I-grade - (국산 침엽수구조재의 허용응력설정에 관하여 - 1종 구조재를 중심으로 -)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.11-16
    • /
    • 1996
  • The purpose of this paper is to present a summary of assignment design values according to domestic softwood structural lumber grading rules. Allowable stresses for visually graded lumber were determined from basic data on small. clear specimens. The data corrected for variability such as natural defects and other factors. The procedure adopted by Japan was used for assigning allowable design values. Strength ratios in relation to each defect were taken from ASTM D 245-81. Korean pine(Pinus koraiensis S. et Z.), Korean red pine(Pinus densiflora S. et Z.), Japanese larch(Larix leptolepis Gordon) and Needle fir(Abies holophylla Max) were applied to this study. The calculated allowable stresses were same in Korean pine and Korean red pine. These values were highest in Japanese larch lowest in Needle fir. So, it is desirable for these species to be classified into different catagories Species Group. However, accurate comparison in design values on lumber grading rules among U.S., Japan and Korea was somewhat difficult. And full scale testing will be necessary for accurate determination of the correction factors to setting up design values.

  • PDF

A Suggestion for Carbonation Prediction Using Domestic Field Survey Data of Carbonation (국내 탄산화 실태자료를 이용한 탄산화 예측식의 제안)

  • Kwon, Seung-Jun;Park, Sang-Sun;Nam, Sang-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.81-88
    • /
    • 2007
  • Among deteriorations of concrete due to environmental exposure, carbonation problems of concrete structures have increased in urban and underground structures. But conventional carbonation-prediction equations that were proposed by foreign references, can not be applied directly to the prediction of carbonation for domestic concrete structures. The purpose of this study is to propose a prediction equation of carbonation depth by considering domestic exposure conditions of concrete structures. For the derivation of the equation, conventional carbonation-prediction equations are analyzed. Through considering the relationship between results of prediction equation and those of various domestic field survey data, the so-called correction factors for different domestic exposure condition of concrete structures are derived. Finally, a carbonation-prediction equation of concrete structures under domestic exposure conditions is proposed with consideration for concrete strength in core and correction factors.

Analytic adherend deformation correction in the new ISO 11003-2 standard: Should it really be applied?

  • Ochsner, A.;Gegner, J.;Gracio, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2004
  • For reliable determination of mechanical characteristics of adhesively bonded joints used e.g. as input data for computer-aided design of complex components, the thick-adherend tensile-shear test according to ISO 11003-2 is the most important material testing method. Although the total displacement of the joint is measured across the polymer layer directly in the overlap zone in order to minimize the influence of the stepped adherends, the substrate deformation must be taken into account within the framework of the evaluation of the shear modulus and the maximum shear strain, at least when high-strength adhesives are applied. In the standard ISO 11003-2 version of 1993, it was prescribed to perform the substrate deformation correction by means of testing a one-piece reference specimen. The authors, however, pointed to the excessive demands on the measuring accuracy of the extensometers connected with this technique in industrial practice and alternatively proposed a numerical deformation analysis of a dummy specimen. This idea of a mathematical correction was included in the revised ISO 11003-2 version of 2001 but in the simplified form of an analytical method based on Hooke's law of elasticity for small strains. In the present work, it is shown that both calculation techniques yield considerably discordant results. As experimental assessment would require high-precision distance determination (e.g. laser extensometer), finite element analyses of the deformation behavior of the bonded joint are performed in order to estimate the accuracy of the obtained substrate deformation corrections. These simulations reveal that the numerical correction technique based on the finite element deformation modeling of the reference specimen leads to considerably more realistic results.

  • PDF

A Study on the Buckling Strength of Plate Panels with Opening (유공판의 좌굴강도에 관한 연구)

  • Kim, Ul-Nyeon;Choe, Ick-Heung;Kwon, Jin-Chil;Paik, Jeom-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.210-224
    • /
    • 2010
  • The aim of the present study is to investigate the buckling strength of plates and stiffened panels with opening under transverse thrust and shear actions. It is observed that the existing design formulation for critical-buckling strength of plates are not valid for perforated plates, because the current design formulation trends can significantly overestimate or underestimate the load-carrying capacity of plates when plates have large opening and/or are thick. A series of eigen value and elastic.plastic large deflection finite element analyses are carried out with varying the aspect ratio of plate, the opening size and location on plate until and after the ultimate strength is reached. Based on the results obtained from the present study, closed-form design formulations for the elastic buckling strength of plates and stiffened panels with opening are derived. The derived design formulations are considered plasticity correction of the material and verified by experimental tests and results of nonlinear finite element computations.

Effect of steel fibres and nano silica on fracture properties of medium strength concrete

  • Murthy, A. Ramachandra;Ganesh, P.
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.143-150
    • /
    • 2019
  • This study presents the fracture properties of nano modified medium strength concrete (MSC). The nano particle used in this study is nano silica which replaces cement about 1 and 2% by weight, and the micro steel fibers are added about 0.4% volume of concrete. In addition to fracture properties, mechanical properties, namely, compressive strength, split tensile strength, and flexural strength of nano modified MSC are studied. To ensure the durability of the MSC, durability studies such as rapid chloride penetration test, sorptivity test, and water absorption test have been carried out for the nano modified MSC. From the study, it is observed that significant performance improvement in nano modified MSC in terms of strength and durability which could be attributed due to the addition pozzolanic reaction and the filler effect of nano silica. The incorporation of nano silica increases the fracture energy about 30% for mix without nano silica. Also, size independent fracture energy is arrived using two popular methods, namely, RILEM work of fracture method with $P-{\delta}$ tail correction and boundary effect method. Both the methods resulted in nearly the same size-independent $G_F$ irrespective of the notch to depth ratio of the same specimen. This shows evidence that either of the two procedures could be used in practice for analysis of cracked concrete structures.

A Study on the Evaluation of elastic buckling strength of Singly Symmetric I-Beams (일축대칭 I형보의 탄성좌굴강도 산정에 관한 연구)

  • Ku, So-Yeun;Ryu, Hyo-Jin;Lim, Nam-Hyoung;Lee, Jin-Ok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.79-82
    • /
    • 2008
  • The elastic critical moment of I-beams subjected to moment is directly affected by the following factors; loading type; loading position with respect to the mid-height of the cross section; end restraint conditions. Most design specifications usually provide buckling solutions derived for uniform moment loading condition and account for variable moment along the unbraced length with a moment gradient correction factor applied to these solutions. In order for the method in the SSRC Guide to be applicable for singly symmetric I-beams, improved moment gradient correction factors were proposed in this study. Finite element buckling analyses of singly symmetric I-beams subjected to transverse loading applied at different heights with respect to the mid-height of the cross section were conducted. Transverse loads consisting of a mid-span point load and a uniformly distributed load were considered in the investigation.

  • PDF

A Study on Bias Effect on Model Selection Criteria in Graphical Lasso

  • Choi, Young-Geun;Jeong, Seyoung;Yu, Donghyeon
    • Quantitative Bio-Science
    • /
    • v.37 no.2
    • /
    • pp.133-141
    • /
    • 2018
  • Graphical lasso is one of the most popular methods to estimate a sparse precision matrix, which is an inverse of a covariance matrix. The objective function of graphical lasso imposes an ${\ell}_1$-penalty on the (vectorized) precision matrix, where a tuning parameter controls the strength of the penalization. The selection of the tuning parameter is practically and theoretically important since the performance of the estimation depends on an appropriate choice of tuning parameter. While information criteria (e.g. AIC, BIC, or extended BIC) have been widely used, they require an asymptotically unbiased estimator to select optimal tuning parameter. Thus, the biasedness of the ${\ell}_1$-regularized estimate in the graphical lasso may lead to a suboptimal tuning. In this paper, we propose a two-staged bias-correction procedure for the graphical lasso, where the first stage runs the usual graphical lasso and the second stage reruns the procedure with an additional constraint that zero estimates at the first stage remain zero. Our simulation and real data example show that the proposed bias correction improved on both edge recovery and estimation error compared to the single-staged graphical lasso.