Acknowledgement
Supported by : INHA UNIVERSITY
References
- Jordan MI, Sejnowski TJ. Graphical models: foundations of neural computation. Computational neuroscience series. London: The MIT Press; 2001.
- Menendez P, Kourmpetis YAI, ter Braak CJF, van Eeuwijk FA. Gene regulatory networks from multifactorial perturbations using graphical Lasso: application to the DREAM4 challenge. Plos One 2010;5:e14147. https://doi.org/10.1371/journal.pone.0014147
- Oh JH, Deasy JO. Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm. BMC Bioinformatics 2014;15:S5.
- Coloigner J, Phlypo R, Bush A, Lepore N, Wood J. Functional connectivity analysis for thalassemia disease based on a graphical lasso model. 2016 IEEE 13th I S Biomed Imaging; 2016.
- Kim J. Review of connectivity and dynamics of neural information processing. QBS 2017;36:97-103.
- Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008:9:432-441. https://doi.org/10.1093/biostatistics/kxm045
- Witten D, Friedman J, Simon N. New insights and faster computations for the graphical lasso. J Comput Graph Stat 2011;20:892-900. https://doi.org/10.1198/jcgs.2011.11051a
- Mazumder R, Hastie T. The graphical lasso: new insights and alternatives. Electron J Stat 2012;6:2125-2149. https://doi.org/10.1214/12-EJS740
- Meinshausen N, Buhlmann P. High-dimensional graphs and variable selection with the lasso. Ann Stat 2006;34:1436-1462. https://doi.org/10.1214/009053606000000281
- Peng J, Wang P, Zhou N, Zhu J. Partial correlation estimation by joint sparse regression models. J Am Stat Assoc 2009;104:735-746. https://doi.org/10.1198/jasa.2009.0126
- Khare K, Oh S-Y, Rajaratnam B. A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees. J Roy Stat Soc B 2015;77:803-825. https://doi.org/10.1111/rssb.12088
- Ali A, Khare K, Oh S-Y, Rajaratnam B. Generalized pseudolikelihood methods for inverse covariance estimation. Proc Mach Learn Res 2017;54:280-288.
- Cai T, Liu W, Luo X. A constrained l (1) minimization approach to sparse precision matrix estimation. J Am Stat Assoc 2011;106:594-607. https://doi.org/10.1198/jasa.2011.tm10155
- Cai T, Liu W, Zhou H. Estimating sparse precision matrix: optimal rates of convergence and adaptive estimation. Ann Stat 2016;44:455-488. https://doi.org/10.1214/13-AOS1171
- Danaher P, Wang P, Witten D. The joint graphical lasso for inverse covariance estimation across multiple classes. J Roy Stat Soc B 2014;76:373-397. https://doi.org/10.1111/rssb.12033
- Foygel R, Drton M. Extended Bayesian information criteria for Gaussian graphical models. Neural Inf Process S 2010.
- Guo J, Cheng J, Elizaveta L, George M, Zhu J. Estimating heterogeneous graphical models for discrete data with an application to roll call voting. Ann Appl Stat 2015;9:821-848. https://doi.org/10.1214/13-AOAS700
- Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika 2008;95:759-771. https://doi.org/10.1093/biomet/asn034
- Fan Y, Tang CY. Tuning parameter selection in high dimensional penalized likelihood. J Roy Stat Soc B 2013;75:531-552. https://doi.org/10.1111/rssb.12001
- Wang T, Zhu LX. Consistent tuning parameter selection in high dimensional sparse linear regression. J Multivariate Anal 2011;102:1141-1151. https://doi.org/10.1016/j.jmva.2011.03.007
- Belloni A, Chernozhukov V. Least squares after model selection in high-dimensional sparse models. Bernoulli 2013;19:521-547. https://doi.org/10.3150/11-BEJ410
- Barabasi A, Albert R. Emergence of scaling in random networks. Science 1999;286:509-512. https://doi.org/10.1126/science.286.5439.509
- Jemal A, Siegel R, Xu J, Ward E. Cancer statistics. Ca-cancer J Clin 2010;60:277-300. https://doi.org/10.3322/caac.20073
- Li X, Asmitananda T, Gao L, Gai D, Song Z, Zhang Y, et al. Biomarkers in the lung cancer diagnosis: a clinical perspective. Neoplasma 2012;59:500-507. https://doi.org/10.4149/neo_2012_064
- Tang H, Xiao G, Behrens C, Schiller J, Allen J, Chow CW, et al. A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin Cancer Res 2013;19:1577-1586. https://doi.org/10.1158/1078-0432.CCR-12-2321
- Tomida S, Takeuchi T, Shimada Y, Arima C, Matsuo K, Mitsudomi T, et al. Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. J Clin Oncol 2009;27:2793-2799. https://doi.org/10.1200/JCO.2008.19.7053
- Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003;19:185-193. https://doi.org/10.1093/bioinformatics/19.2.185
- Yu D, Son W, Lim J, Xiao G. Statistical completion of a partially identified graph with applications for the estimation of gene regulatory networks. Biostatistics 2015;16:670-685. https://doi.org/10.1093/biostatistics/kxv013
- Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J Roy Stat Soc B 1995;57:289-300.
- Pounds S, Morris SW. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 2003;19:1236-1242. https://doi.org/10.1093/bioinformatics/btg148
- Sun YB, Xu S. Expression of KISS1 and KISS1R (GPR54) may be used as favorable prognostic markers for patients with non-small cell lung cancer. Int J Oncol 2013;43:521-530. https://doi.org/10.3892/ijo.2013.1967
- Zhao YJ, Ju Q, Li GC. Tumor markers for hepatocellular carcinoma. Mol Clin Oncol 2013;1:593-598. https://doi.org/10.3892/mco.2013.119
- Vihinen P, Kahari VM. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J Cancer 2002;99:157-166. https://doi.org/10.1002/ijc.10329
- Yu H, Xu Q, Liu F, Ye X, Wang J, Meng X. Identification and validation of long noncoding RNA biomarkers in human non-small-cell lung carcinomas. J Thorac Oncol 2015;10:645-654. https://doi.org/10.1097/JTO.0000000000000470
- Mouallif M, Albert A, Zeddou M, Ennaji MM, Delvenne P, Guenin S. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia. Int J Exp Pathol 2014;95:251-259. https://doi.org/10.1111/iep.12077