• 제목/요약/키워드: Strength calculation

검색결과 651건 처리시간 0.021초

저항 점 용접부의 피로강도에 미치는 잔류응력의 영향 (Effect of Residual Stress on Fatigue Strength in Resistance Spot Weldment)

  • 양영수;손광재;조성규;홍석길;김선균;모경환
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1713-1719
    • /
    • 2001
  • Estimation of fatigue strength on the spot welded joint is very Important for strength design of spot welded steed sheet structures. In this paper, the effect of residual stress on the fatigue life of resistance spot weldment was studied. Residual stress fields of weldment were calculated by using thermo elastic plastic finite element analysis and equivalent fatigue stress considering residual stress effect was obtained. And then we predicted fatigue life, which included the effect of the residual stresses and the actual loading stresses. The calculation and experimental results were in good agreement. Therefore, the proposed calculated model can be considered to be sufficiently powerful for the prediction of fatigue life.

슬릿형상에 따른 강재댐퍼의 이력거동 (Hysteretic Behaviors of Metallic Dampers with the Various Slit Shape)

  • 이현호;김세일
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권5호
    • /
    • pp.199-208
    • /
    • 2011
  • 본 연구의 목적은 강재댐퍼 면내에 형성되는 슬릿 형상이 댐퍼의 강도 및 변형 능력에 미치는 영향을 평가하는데 있다. 이를 위하여 댐퍼 스트럿의 높이 및 각도에 대한 실험체 12개를 만들어 전단실험을 수행하였다. 분석결과, 댐퍼의 초기강성, 항복강도 및 항복 후 2차강성의 크기를 고려할 때 스트럿 높이가 200mm이고, 스트럿 각도 $60^{\circ}$인 S형 강재댐퍼의 내진성능이 가장 우수한 것으로 평가되었다. 또한 기존내력식을 이용한 댐퍼의 항복강도 비교결과, 내력식의 결과보다 실험 결과값이 크게 나와 댐퍼의 항복강도는 스트럿높이, 스트럿각도 등의 크기정도에 지배 받는 것으로 나타났다.

컴퓨터를 이용한 동력전달용 인벌류우트 원통치차의 설계 (Computer-Aided Design of Involute Cylindrical Gears for Power Transmission)

  • 정태형;김민수
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.594-602
    • /
    • 1990
  • 본 연구에서는 동력전달용 인벌류우트 원통치차(스퍼어 및 헬리컬 기어)의 강 도 및 각종 영향인자를 충분히 고려하면서 크기를 최소로 하는 치차장치의 설계법을 개발하고, 이 설계법을 기본으로 하여 퍼스널 컴퓨터 상에서 누구나 손쉽게 설계에 이 용할 수 있는 설계 시스템을 개발하여 그 평가를 수행한다.

Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion

  • Ding, Fa-xing;Sheng, Shi-jing;Yu, Yu-jie;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.291-301
    • /
    • 2019
  • Pure torsion loading conditions were not frequently occurred in practical engineering, but the torsional researches were important since it's the basis of mechanical property researches under complex loading. Then a 3D finite element model with precise material constitutive models was established, and the effectiveness was verified with test data. Parametric studies with varying factors as steel yield strength, concrete strength and sectional height-width ratio, were performed. Internal stress state and the interaction effect between encased steel tube and the core concrete were analyzed. Results indicated that due to the confinement effect between steel tube and core concrete, the torsional strength of CFT columns was greatly improved comparing to plain concrete columns. The steel ratio would greatly influence the torque share between the steel tube and the core concrete. Then the torsional strength calculation formulas for core concrete and the whole CFT column were proposed. The proposed formula could be simpler and easier to use with guaranteed accuracy. Related design codes were more conservative than the proposed formula, but the proposed formula presented more satisfactory agreement with experimental results.

유조선 좌초 사고 시 2차사고 방지를 위한 잔류강도 평가기술 개발 (Development of an Empirical Formula for Residual Strength Assessment to Prevent Sequential Events of Grounded Oil Tankers)

  • 백승준;김상진;백점기;손정민
    • 대한조선학회논문집
    • /
    • 제56권3호
    • /
    • pp.263-272
    • /
    • 2019
  • The aim of this study is to develop a rapid calculation technique of the residual strength in order to prevent sequential events under grounding accidents. Very Large Crude-Oil Carrier (VLCC), Suezmax, and Aframax double hull oil tankers carrying large quantities of crude oil were selected for target structures. The rock geometries are chosen from the published regulation by Marine Pollution Treaty (MARPOL) of the International Maritime Organization (IMO). Oceanic rocks as the most frequently encountered obstruction with ships are applied in this work. Damage condition was predicted using ALPS/HULL program based on grounding scenario with selected parameters, i.e. depth of penetration, damage location and tanker type. The results of the scenarios are quantified to form an empirical formula which can evaluate the residual strength. The proposed formula is validated by applying a series of random grounding scenarios.

Experimental and numerical investigation on exposed RCFST column-base Joint

  • Ben, Mou;Xingchen, Yan;Qiyun, Qiao;Wanqiu, Zhou
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.749-766
    • /
    • 2022
  • This paper investigates the seismic performance of exposed RCFST column-base joints, in which the high-strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens with different axial force ratios (n = 0, 0.25, and 0.5) were tested under cyclic loadings. Finite element analysis (FEA) models were validated in the basic indexes and failure mode. The hysteresis behavior of the exposed RCFST column-base joints was studied by the parametrical analysis including six parameters: width of column (D), width-thickness ratio (D/t), axial force ratio (n), shear-span ratio (L/D), steel tube strength (fy) and concrete strength (fc). The bending moment of the exposed RCFST column-base joint increased with D, fy and fc. But the D/t and L/D play a little effect on the bending capacity of the new column-base joint. Finally, the calculation formula is proposed to assess the bending moment capacities, and the accuracy and stability of the formula are verified.

Comparison of Turkish Steel Building Specifications, TS 648 and SDCCSS 2018

  • Bozkurt, Mehmet Bakir;Ergut, Abdulkerim;Ozkilic, Yasin Onuralp
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.513-533
    • /
    • 2022
  • This study presents similarities and differences between Turkish Building Code for Steel Structures, which are TS 648 and SDCCSS (Specification for Design, Calculation and Construction of Steel Structures) in terms of the design of the members. Hot-rolled I-shaped steel sections for symmetrical and U-shaped steel sections (i.e., channels) for monosymmetric sections were elaborated in detail. The design strength of tension members under tensile load, compression members under axial load and flexural members under flexure and shear were examined separately. Connection details for tension members, slenderness for compression members and distance between lateral supports for flexural members were considered as prime variables. Analysis results revealed the design strength of the tension members where at least one of the cross-sectional parts is not connected to the connection plates, I-shaped compression members where a slenderness ratio is below 39 (𝛌<39), U-shaped compression members and flexural members where Lb is between Lp and Lr (Lpb≤Lr) designed based on TS 648 are greater than those designed based on SDCCSS 2018. Strength differences between the specification can reach 79% for tensile members, 13% for compression members and 9% for flexural members.

Design Improvement of Mechanical Transmission for Tracked Small Agricultural Transporters through Gear Strength Analysis

  • Kim, Hong-Gon;Jo, Yeon-Ju;Kim, Chul-Soo;Han, Yong-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제41권1호
    • /
    • pp.1-11
    • /
    • 2016
  • Purpose: The gear strength of a new mechanical transmission designed to increase the loading weight of small 4.8 kW tracked agricultural transporters was analyzed. Design improvements to increase the gear strength and reduce the gear weight were proposed after examining the parameters. Methods: Sixteen operators from three regions were surveyed to obtain the usage profile of small 4.8 kW transporters. Gear strength was evaluated by calculating contact stress and tooth root stress using commercial software following ISO 6336. Results: From the strength calculation for each gear pair, contact stress smaller than tooth root stresses were produced in all gear pairs. The safety factors in most cases exceeded 1.0, except in the case of gear pair II in group II. The design life of the transporter using gear pair II in group II was 42% under harsh conditions-thus, this design life needs improvement. A robust design was proposed by examining the relevant parameters (face width and profile shift coefficient) to increase the design life of the transporter. In addition, a lightweight design for gear pair I in group II that was considered overdesigned was proposed by examining the face width to reduce the weight of the drive gear by 42% and that of the driven gear by 30%. Conclusions: The Safety factor for the design life was examined through a gear strength analysis. After examining the relevant parameters, conditions for strength improvement were proposed to increase design life or adjust overdesigned gear. However, load conditions differ depending on the working conditions or user's preferences; therefore, it is necessary to conduct further studies in various regions.

강재 원형기둥-상자형보 접합부의 다이아프램 설계법 (Diaphragm Design Method of Steel Box Beam and Circular Column Connections)

  • 김영필;황원섭;박문수
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.123-135
    • /
    • 2006
  • 이 연구에서는 원형기둥-상자형보 접합부의 다이아프램 형상에 따른 거동특성과 다이아프램 설계방법에 관한 것이다. 강재 원형기둥-상자형보 접합부의 다이아프램은 상자형보 하부플랜지로부터 전달되는 집중력을 지지하게 되며, 보와 기둥의 강도 뿐만아니라 접합부의 거동에 큰 영향을 미치게 된다. 기존의 연구에서는 부정정 곡선보 모델로부터 유도된 다이아프램의 응력계산식이 제시되어 있으나, 설계식으로 활용되기에는 계산과정이 난해하고 유도과정이 비합리적이다. 또한 접합부 강도에 대한 다이 아프램의 역할을 고려하지 않음으로써 다이아프램의 합리적인 설계가 이루어 지지 못하고 있다. 따라서 이 연구에서는 접합부 다이아프램의 설계변수에 대한 비선형 유한요소 해석을 수행하여, 다이아프램의 형상에 따른 강도특성을 검토하였다. 또한 원형기둥-상자형보, 접합부 다이아프램의 이론식이 접합부의 실제 거동과 큰 차이를 나타냄을 확인하였고, 보와 기둥 및 다이아프램 강성을 고려한 강재 원형기둥 접합부 다이아프램의 설계방법을 제안하였다.

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.