• Title/Summary/Keyword: Strength assessment

Search Result 1,257, Processing Time 0.023 seconds

Assessment of Code Requirments on Minimum Shear Reinforcement in High-Strength RC Beams (RC 보의 강도증진에 따른 최소전단철근 규준의 적합성 평가에 관한 연구)

  • 윤영수;원종필;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.289-294
    • /
    • 1996
  • This paper persents the assessment of the minimum shear reinforcement requirements in normal, medium and high-strength reinforced concrete beams. Twelve shear tests were conducted on full-scale beam specimens having design concrete compressive strengths of 35, 70 and 100 MPa. Different amounts of minimum shear reinfrocement were investigated, including the amounts required by Korean Concrete Standard (KCI88), JCI86, ACI89 (revised 1992) and CSA94 standard. The performance of the different amounts of shear reinforcement are discussed in terms of the shear capacity, the ductility and the crack control at service load levels. An assessment of code provisions for minimum shear reinforcememt, and the prediction and comparison of the ultimate shear capacity are also presented.

  • PDF

A Study on the 3-D Geometric Modeler for Safety Assessment of Damaged Ships (손상선박의 안전성평가를 위한 3차원 형상 모델러에 관한 연구)

  • 이동곤;이순섭;박범진
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.30-36
    • /
    • 2003
  • To improve survivability of damaged ship, assessment of stability and structural safety, and behavior analysis in wave is required. Prediction of sinking time, damage stability and structural strength considering progressive flooding and dynamic force in wave is very important. To do it, a geometric model which can be express damaged ship is prepared. This paper described the geometric modeler for survivability assessment of damaged ship. The modeler is developed based on 3-D geometric modeling kernel, ACIS. The hull form and compartment definition is available fundamentally. And requirement for modeler contains data generation and interface for hydrostatic calculation, behavior analysis, and longitudinal strength analysis and so on. To easy access modeling system by conventional user such as crew, user interface is developing.

Corrosion Assessment of Al/Fe Dissimilar Metal Joint (Al/Fe 이종금속 접합부의 부식특성)

  • Kang, Minjung;Kim, Cheolhee;Kim, Junki;Kim, Dongcheol;Kim, Jonghoon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.55-62
    • /
    • 2014
  • The use of light-weight Al alloys in the automotive industry is increasing to meet requirements for fuel efficiency and emission reduction. Joining Al alloy to the conventional steel sheet is also very important issue with the increased use of Al alloy, and several joining processes have been introduced to enhance joining strength between dissimilar metals. This paper deals with a galvanic corrosion in the dissimilar metal joining. Salt spray tests up to 2000 hours were conducted on a self-piercing rivet, spot welded, adhesive bonded and weld-bonded joints, and cross-sections and tensile shear strength according the salt spray duration were analyzed at every 500-hour. Self-piercing rivet joint had relative low initial strength but the joint strength did not change regardless of the salt spray duration. The strength of other joints (spot welded, adhesive bonded and weld-bonded joints) decreased with the increase of salt spray duration and the corrosion behaviour of each joint was discussed.

Stochastic modelling and lifecycle performance assessment of bond strength of corroded reinforcement in concrete

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.319-336
    • /
    • 2015
  • Life cycle performance of corrosion affected RC structures is an important and challenging issue for effective infrastructure management. The accurate condition assessment of corroded RC structures mainly depends on the effective evaluation of deterioration occurring in the structures. Structural performance deterioration caused by reinforcement corrosion is a complex phenomenon which is generally uncertain and non-decreasing. Therefore, a stochastic modelling such as the gamma process can be an effective tool to consider the temporal uncertainty associated with performance deterioration. This paper presents a time-dependent reliability analysis of corrosion affected RC structures associated bond strength degradation. Initially, an analytical model to evaluate cracking in the concrete cover and the associated loss of bond between the corroded steel and the surrounding cracked concrete is developed. The analytical results of cover surface cracking and bond strength deterioration are examined by experimental data available. Then the verified analytical results are used for the stochastic deterioration modelling, presented here as gamma process. The application of the proposed approach is illustrated with a numerical example. The results from the illustrative example show that the proposed approach is capable of assessing performance of the bond strength of concrete structures affected by reinforcement corrosion during their lifecycle.

Consideration for AFRAMAX TANKER Applied Common Structural Rules (AFRAMAX TANKER의 CSR 적용에 대한 고찰)

  • Kim, Sung-In;Kim, Young-Nam;Kim, Gyeong-Rae
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.99-106
    • /
    • 2007
  • The IACS Common Structural Rules are to be applied for double hull tanker of more than 150m length with contracted after 1 April 2006. The objectives of the rules are to make more robust, safer ship and to ensure transparency of the technical background. In compliance of CSR, we had carried out prescriptive rules scantling determination and 3-D hold FE analysis of AFRAMAX TANKER. Prescriptive rules scantling determines the minimum required scantling, hull-girder longitudinal bending and shear strength, hull girder ultimate strength, local strength of plate and stiffener, strength of primary supporting member and fatigue assessment of the longitudinal stiffener end connections to the transverse bulkhead. 3-D hold FE analysis assesses the structural adequacy of the vessel's primary hull structure and major supporting members using yielding and buckling failure modes. So we could verify the strength assessment of AFRAMAX TANKER applied CSR.

  • PDF

TEMPERATURE CONTROL AND COMPRESSIVE STRENGTH ASSESSMENT OF IN-PLACE CONCRETE STRUCTURES USING THE WIRELESS TEMPERATURE MEASURING SYSTEM BASED ON THE UBIQUITOUS SENSOR NETWORK

  • Ho Kyoo JO;Hyung Rae KIM;Tae Koo KIM
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.794-799
    • /
    • 2009
  • The temperature control of in-place concrete is the most important factor for an early age of curing concrete. Heat stress of mass concrete caused by the heat of hydration can induce the crack of concrete, and a frost damage from cold weather casting concrete results defect on compressive strength and degradation of durability. Therefore, success and failure of concrete work is dependant on the measurement and control of concrete temperature. In addition, the compressive strength assessment of in-place concrete obtained from the maturity calculated from the history of temperature make a reduction of construction cycle time, possible. For that purpose, wireless temperature measuring system was developed to control temperature and assess strength of concrete. And, it was possible to monitor the temperature of concrete over 1km apart from site office and to take a proper measure; mesh-type network was developed for wireless sensor. Furthermore, curing control system that contains the program capable to calculate the maturity of concrete from the history of temperature and to assess the compressive strength of concrete was established. In this study, organization and practical method of developed curing control system are presented; base on in-place application case.

  • PDF

Assessment of Flexural Ductility in RC Beams with High-Strength Reinforcement (고장력 철근을 사용한 RC 보의 휨연성 평가)

  • 권순범;윤영수;이만섭;임철현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.897-902
    • /
    • 2001
  • Recently, structure performance is maximized by using high strength concrete. In design of structure, concrete need combination with reinforcement, but use of common strength reinforcement make member complex bar placement, so high strength concrete members require increased strength reinforcement. If common strength reinforcement replaced by equal tension area of high strength reinforcement, reinforcement ratio increase and brittle failure of member may occur by material change. So, adequate upper limit of strength ratio is required to affirm ductile behavior in application of high strength reinforcement. In this study, ductility behavior was analysed by factor of reinforcement ratio, strength of concrete and reinforcement. The result indicate that ductile failure is shown under 0.35 $\rho_{b}$ in any reinforcement strength of same section and high strength concrete of 800kg/$cm^{2}$ used commonly is compatible with reinforcement of 5500kg/$cm^{2}$.

  • PDF

Assessment of Fatigue Strength Characteristics of Tendon Porch in Offshore Platforms for API 2W Gr. 50 Steel (API 2W Gr.50 강재를 이용한 해양구조물 Tendon Porch의 피로성능 평가)

  • Im, Sung-Woo;Lee, Joo-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.82-88
    • /
    • 2006
  • This assessment is concerned with the fatigue strength of the tendon porch found in TLP. Lorge-scale fatigue tests with models constructed at 30% the size of the real structures have been carried out to investigate the fatigue behavior of the API 2W Grade 50 steel recently produced by POSCO. The fatigue life for the present test models was obtained based on the concept of nominal stress. A comparison of the present test results with those obtained by a numerical approach based on the structural analysis results has showngood agreement. The present results were also compared with the design curves in DnV RP-C203.

Fatigue Strength Assessment of a Ship Structures using the Influence Coefficient Concept and Spectral Analysis Technique (영향계수법과 스펙트럼 해석법을 이용한 선체의 피로강도평가)

  • Nho, I.S.;Kim, J.K.;Yoon, J.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.75-84
    • /
    • 1997
  • The up-to-date fatigue strength assessment system for ship structures was developed based on the spectral analysis method and numerical calculation for a membrane type LNG carrier was carried out to verify the effectiveness of the developed system. The wave induced loads acting on the ship's hull were calculated based on strip theory. And introducing the concept of influence factor and 3-D fine mesh structural analysis, direct calculation of long-term distribution of wave induced stress components was realized. Using the derived long term distribution of stress components and Miner-Parmgren's linear damage accumulation rule, fatigue strength of structural components were investigated.

  • PDF

The Effects of Various Cement Type and Compositions on the Material Properties of high Strength Concrete (시멘트 특성의 변화가 고강도콘크리트의 재료특성에 미치는 영향)

  • 백상현;이종열;엄태선;임채용;안광원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.47-52
    • /
    • 2000
  • Recently, it is very necessary the development of the manufacturing techniques for high strength concrete(HSC) for the large-scale size and good quality of civil structure. But, the manufacture and quality control of HSC of which shrinkage, heat of hydration and workability at construction filed are considered, is very difficult due to its low water-cement ratio and high quantity of unit cement content. In the present study, we tried to know and assess the influences of chemical and physical properties of cement on the material properties of HSC. We analyzed basic properties of 4 kinds of cement whose chemical and physical properties are different each other through various tests such as chemical analysis and mortal test. Also, we performed the assessment of the material properties of HSC for each dement by the test for the conditions of same mix design and similar compressive strength. From the results in the study, the assessment of the important quality factors of cement influencing the properties of HSC may be utilized to quality control of applied cement to manufacture the HSC of high quality.

  • PDF