• Title/Summary/Keyword: Strength Improvement

Search Result 2,917, Processing Time 0.032 seconds

Effect of Cultural System and Sonic Strength of Nutrient Solution on the Growth of Dendrobium (Dendrobium phalaenopsis ) Seedlings (양액재배 시스템 및 양액농도가 덴파레(Dendrobium phalaenopsis) 유묘의 생장에 미치는 영향)

  • 정순주;이범선;안규빈
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.284-291
    • /
    • 1997
  • This study was conducted to evaluate the optimum hydroponic system and nutrient solution for shortening the early growth period and quality improvement of dendrobium ( Dendrobium Phalaenopsis) seedlings. Dendrobium seedlings with 3 to 4 leaves were transplanted in the deep flow technique(DFT) system, aeroponic system, and ebb and flow system with different concentration of balanced nutrient solutions recommended by the Japanese Horticultural Experiment Station. Growth characteristics of shoot and root were recorded and evaulated among treatments. For autumn cultivation, plant height was the longest at the DFT system with quarter concentration of nutrient solution, where aeroponic system with half concentration of nutrient solution. Aeroponic system stimulated the root growth but fresh weight was observed in the plots of DFT system. For spring cultivation, pH values increased up 7.5 at the DFT and aeroponic system, where EC values did not fluctuate regardless of cultural system. Ebb and flow system showed the best result in the growth of plant followed by BFT system and aeroponic system. Higher concentration of nutrient solution within this range of treatment was recommended for the growth promotion of leaf length and width in DFT system. In conclusion, growth responses differed depending on the cultural system, concentrations of nutrient solutions and duration of cltivation.

  • PDF

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF

A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent (증점제를 사용한 저분체 고유동 콘크리트의 특성에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.689-696
    • /
    • 2017
  • The practical applications of ordinary high-fluidity concrete have been limited due to several drawbacks, such as high hydration heat, high amount of shrinkage, and non-economic strength development. On the other hand, due to its advantages, such as improvement of construction quality, reduction of construction cost and period, the development of high-fluidity concrete is a pressing need. This study examined the properties of high-fluidity concrete, which can be manufactured on the low binders using a viscosity agent to prevent the segregation of materials. The optimal viscosity agent was selected by an evaluation of the mechanical properties of high-fluidity concrete among six viscosity agents. The acrylic type and urethane type viscosity agents showed the best performance within the range where no material separation occurred. The mechanical properties were evaluated to examine the optimal amount of AC and UT viscosity agent added by mixing two viscosity agents according to the adding ratio and blending them together with high performance water reducing agent. When the ratio of the AC : UT viscosity agents was 5:5, it was most suited for high-fluidity concrete with low binders by increasing the workability and effect of the reducing viscosity.

A Study on the Production of Landfill-Cover Material Using the Physical Characteristics of Sludge and the Reduction of Odor (슬러지의 물리적 특성을 이용한 매립복토재 생산과 악취저감에 대한 연구)

  • Park, Jung Hyun;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.15-29
    • /
    • 2020
  • The aims of this study is to improve physical properties of the sewage sludge and the process sludge generated in the leachate treatment by mixing the dry fuel, to develop the neutral solidifing agents that reduce oder, and to recycle the sewage and the process sludges as landfill cover materials. The mixing ratio (W/W) of sludges and dry fuel was appropriate at about 1:1, and the mixed materials were shown to be homogeneous at that ratio. We could know that when the sludges were mixed with dry fuel, moisture contents and viscosities are reduced, and air passages are formed between particles and particles. The various mixing tests and odor tests showed that the neutral solidifing agent was effective for the odor reduction. The main ingredient of the solidifing agent is the ash of sewage sludge, enabling it competitive in waste recycling and production costs. The landfill cover, using developed neutral solidification agent, improved physical properties to satisfy the quality standards and to increase the compressive strength. It also proved to reduce the value of complex oder and the usage of solidification agent to 1/3 (3,000 to 1,000) and to 1/8 (50% to 6%), respectively, from the comparative study with alkaline solidified landfill cover. Further research is under way to prove that this can be mixed with general soil to be used as a soil improvement agent for plant cultivation.

Characteristics of Input and Output of Scientific Research (국가별 과학연구 투입과 성과의 특성분석)

  • Park, Hyun-Woo;Kim, Kyung-Ho;Yeo, Woon-Dong
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.3
    • /
    • pp.471-498
    • /
    • 2009
  • The ability to judge a country's scientific standing is vital for the governments and businesses that must decide scientific priorities and funding. In this paper, we analyze the output and outcomes from research investment over the recent years, to measure the quality of scientific research on national scales and to set it in an international context. There are many ways to evaluate the quality of scientific research, but few have proved satisfactory. To measure the quantity and quality of science in different nations, we analyzed the numbers of published research papers and their citations. The number of citations per paper is a useful measure of the impact of a nation's research output. Essential at a were acquired from SCI database by Thomson Scientific, which indexes more than 8,000 journals, representing most significant materials in science and engineering. The purpose of this paper is to evaluate and compare the output and outcomes among nations in a variety of viewpoints and criteria. One of the implications in response to the result of analysis is that sustainable economic development in highly competitive world markets requires a direct engagement in the generation of knowledge. Even modest improvement in healthcare, clean water, sanitation, food, and transport need capabilities in engineering, technology, and medicine beyond many countries' reach. Nations exporting natural resources such as gold and oil can import technology and expertise, but only until these resources are exhausted. For them, sustainability should imply investment in alternative agricultural and technological capabilities through improvements in their skills base. A strong science base does not necessarily leat to wealth generation. However, strength in science has additional benefits for individual nations, and for the world as a whole.

  • PDF

Effects of Robot-assisted Therapy on Lower Limb in Patients with Subacute Stroke (아급성기 뇌졸중 환자에서의 로봇 보조 보행훈련 효과)

  • Kim, Ji Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.459-466
    • /
    • 2016
  • This study examined the effects of robot-assisted therapy on the motor and functional recovery of the lower limbs in 53 subacute stroke patients. Robot-assisted therapy was performed using Lokomat? (Hocoma AG, Zurich, Switzerland) for thirty minutes per day, five times a week for four weeks. The outcome measures used were the Fugl-Meyer assessment, Motricity index(MI), Functional ambulation category(FAC), Berg balance scale(BBS) for gait function and balance ability, 10m walking test, K-Modified Barthel Index(K-MBI) for the activities of daily living and Mini mental state examination (MMSE), and Beck's depression inventory(BDI) for depression. All patients recruited underwent these evaluations before and after the four week robot-assisted therapy. For the evaluation, the somatosensory evoked potentials were used to assess the functional recovery. Robot-assisted therapy on the lower limb after subacute stroke showed improvement in motor strength, gait function, and the activities of daily living. All changes in terms of MI, FAC, BBS, and K-MBI exhibited a statistically significant difference after the four weeks robot-assisted therapy. The somatosensory evoked potential result showed a correlation with the MI and K-MBI. Robot-assisted therapy is believed to facilitate the motor and functional recovery of the lower limb in subacute stroke patients.

A Study on the Improvement of Greenhouse Frame to Bear the Heavy Snow (적설하중 증가에 대비한 비닐하우스 골조 성능의 개선 연구)

  • Jung, Hyunjin;Yang, Sanghyun;Lee, Taehee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2242-2248
    • /
    • 2015
  • The damages from greenhouses collapsing due to heavy snowfall in winter are increasing, and the current frames of greenhouse are required to be improved. This study was conducted to seek solutions to improve intensities of greenhouse frame to bear heavy snows. We investigated a structural safety of greenhouses by calculating axial force, bending moment and combined stress when snow load was increased up to 30% of the current standard ground snow load of the conventional greenhouse types (07-single type 3, 07-single type 18) in the three regions (Gyeongju, Sokcho, and Gangneung) where were most damaged by recent heavy snows. In addition, we determined what structural type was most efficiently bear snow loads by measuring the differences between the load bearing strength according to the changes of tube diameter and thickness or the rafter spacing of greenhouses circular pipe. MIDAS GEN program was used in the analysis. As a result, with the snow load increase of 30%, greenhouse in Gyongju was still safe, but in Sokcho was at a risk, and in Gangneung was possible to be collapsed even in the current snow load. Increased pipe diameter than increased pipe thickness was more efficient in terms of improved performance of greenhouse structure. Accordingly, it is suggested to revise standards of greenhouse to increase pipe diameter of rafter for minimizing damages by heavy snow.

Study of the Reactivation for Art & Culture Content Space Centering to Local Area, Yeongwol (영월지역의 문화예술 콘텐츠 공간 활성화 방안)

  • Park, Ki-Bok
    • Cartoon and Animation Studies
    • /
    • s.17
    • /
    • pp.163-173
    • /
    • 2009
  • The reactivation for Art & Culture Content Space in Gangwon province need new turning point according to new approach with internal and external change. That should be established in sustainable possibility model with preexisted natural advantage instead of economical depression and global warming of in these days. That is not a choice to get a successful construction of art & culture content space in Gangwon province. Throughout of reactivation of art & culture content space in Gangwon province, this proposal should go on with diversity of culture and concrete art & culture educational program absolutely to get a goal in regional economical success and social good influence. Already Yeongwol region had lots of art & cultural spaces and developmental strategy compared with other regions in decade. In these points, I choose this region and would like to research Yeongwol region in limit. Thus I would examine and study about art & culture content space in Yeongwol region. And I will concretely suggest that this proposal is composed with economical creating employment and incoming. The reactivation for Art &Culture Content Space in Yeongwol will build up social and cultural influences to this region to get a new modern cultural images and improvement of common life of regional people by and large. In the way of the process to globalization, this reactivation project for Art &Culture Content Space in Yeongwol should go on the base of regional culture background as a mean of glocalization paradigm strategically. Ahead of developing model for globalization in macroscopic view point, we have to research the demend of reginal situation of cultural content and build up its own strength points. Because Art & Culture Content Space in Yeongwol is the place of people in Yeongwol directly as itself. And managing plans of reactivation of art & culture content space in Yeongwol should build up with diversity of culture and environmental circumstances.

  • PDF

Microstructures and Mechanical Properties of API J55 steel with Heat treatment conditions and Alloying elements(B, Ti) (API J55강의 미세조직과 기계적 특성에 미치는 열처리 및 합금원소(B, Ti)의 영향)

  • Choi, Jong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.69-76
    • /
    • 2018
  • This study examined the effect of the heat treatment and alloying elements (B, Ti) on the microstructures and mechanical properties of API J55 steel. The experiments were carried out using various austenization temperatures ($880^{\circ}C$, $910^{\circ}C$, $940^{\circ}C$), cooling methods (water quenching, oil quenching) and tempering temperatures (none, $550^{\circ}C$, $650^{\circ}C$) with J55 and J55+B,Ti steels. The phase diagram and CCT curve were simulated based on the chemical compositions of the J55 and J55+B,Ti steels to predict the microstructures. The results showed that the A1 and A3 temperatures decreased and, as a result, the noses of the ferrite and bainite parts of the CCT curve moved to the right. Various microstructures were formed, namely martensite, bainite, ferrite and pearlite, in accordance with the heat treatment, which had an effect on the hardness, tensile strength and toughness. Martensite was formed after water quenching, but bainite and ferrite appeared after oil quenching with the J55 specimens. On the other hand, martensite was formed, regardless of the cooling method (water quenching, oil quenching), with the J55+B,Ti specimens, because of the improvement of the hardenability caused by the addition of boron. Therefore, the J55+B,Ti specimens exhibited much higher mechanical properties than the J55 specimens, even after the tempering treatment, since the addition of Ti caused fine precipitates to be formed, which inhibited grain growth at the recrystallization temperature.

Improvement of Fatigue Model of Concrete Pavement Slabs Using Environmental Loading (환경하중을 이용하는 콘크리트 포장 슬래브 피로모형의 개선)

  • Park, Joo-Young;Lim, Jin-Sun;Kim, Sang-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.103-115
    • /
    • 2011
  • Concrete slab curls and warps due to the uneven distribution of temperature and moisture and as the result, internal stress develops within the slab. Therefore, environmental loads must be considered in addition to the traffic loads to predict the lifespan of the concrete pavement more accurately. The strength of the concrete slab is gradually decreases to a certain level at which fatigue cracking is generated by the repetitive traffic and environmental loadings. In this study, a new fatigue regression model was developed based on the results from previously performed studies. To verify the model, another laboratory flexural fatigue test program which was not used in the model development, was conducted and compared with the predictions of other existing models. Each fatigue model was applied to analysis logic of cumulative fatigue damage of concrete pavement developed in the study. The sensitivity of cumulative fatigue damage calculated by each model was analyzed for the design factors such as slab thickness, joint spacing, complex modulus of subgrade reaction and the load transfer at joints. As the result, the model developed in this study could reflect environmental loading more reasonably by improving other existing models which consider R, minimum/maximum stress ratio.