• Title/Summary/Keyword: Strength Gain

Search Result 339, Processing Time 0.019 seconds

Enhancement of Paper Characteristics by Polyvinyl Alcohol/Polyamide-epichlorohydrin Coating as a Complex Strength Additive (Polyvinyl Alcohol/Polyamide-epichlorohydrin 복합 지력증강제에 의한 종이 특성 향상)

  • Jang, Yunjae;Lee, Hwaljong;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.620-625
    • /
    • 2014
  • The effect of polyvinyl alcohol/polyamide-epichlorohydrin (PVA/PAE) complex strengthening additive on dry and wet strength and surface properties of paper was investigated. The enhancements of dry and wet strength and dimensional stability were found when PVA/PAE was applied as a complex strengthening additive compared with the cases of applying individual PVA or PAE. This was understood as physical crosslinking between PVA and PAE in the PVA/PAE complex strength additive. This complex strengthening additive also lowered surface roughness and increased sizing. As a result, PVA/PAE complex strengthening additive provided the distinctive gain dot in printed papers.

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

Sustainable use of OPC-CSA blend for artificial cementation of sand: A dosage optimization study

  • Subramanian, Sathya;Tee, Wei Zhong;Moon, Juhyuk;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.409-422
    • /
    • 2022
  • The use of calcium sulfoaluminate (CSA) cement as a rapid-hardening cement admixture or eco-friendly alternate for ordinary Portland cement (OPC) has been attempted over the years, but the cost of CSA cement and availability of suitable aluminium resource prevent its wide practical application. To propose an effective ground improvement design in sandy soil, this study aims at blending a certain percentage of CSA with OPC to find an optimum blend that would have fast-setting behavior with a lower carbon footprint than OPC without compromising the mechanical properties of the cemented sand. Compared to the 100% CSA case, initial speed of strength development of blended cement is relatively low as it is mixed with OPC. It is found that 80% OPC and 20% CSA blend has low initial strength but eventually produces equivalent ultimate strength (28 days curing) to that of CSA treated sand. The specific OPC-CSA blend (80:20) exhibits significantly higher strength gain than using pure OPC, thus allowing effective geotechnical designs for sustainable and controlled ground improvement. Further parametric studies were conducted for the blended cement under various curing conditions, cement contents, and curing times. Wet-cured cement treated sand had 33% lower strength than that of dry-cured samples, while the stiffness of wet-cured samples was 25% lower than that of dry-cured samples.

Mechanical and microstructural investigations on cement-treated expansive organic subgrade soil

  • Nazerke Sagidullina;Jong Kim;Alfrendo Satyanaga;Taeseo Ku;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.353-366
    • /
    • 2024
  • Organic soils pose significant challenges in geotechnical engineering due to their high compressibility and low stability, which can result in issues like differential settlement, rutting, and pavement deformation. This study explores effective methods for stabilizing organic soils. Rather than conventional ordinary Portland cement (OPC), the focus is on using environmentally friendly calcium sulfoaluminate (CSA) cement, known for its rapid setting, high early strength development, and environmental benefits. Mechanical behavior is analyzed through 1-D free swell, unconfined compressive strength (UCS), and bender element (BE) tests. Microstructural analyses, including Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), characterize the soil mixed with CSA cement. Experimental results demonstrate improved soil properties with increasing cement dosage and curing periods. A notable strength increase is observed in soil samples with 15% cement content, with UCS doubling after 7 days. This trend aligns with shear wave velocity results from the BE test. SEM and FTIR spectroscopy reveal how CSA cement hydration forms hydrated calcium silicate gel and ettringite, enhancing soil properties. CSA cement is recommended for reinforcing organic subgrade soil due to its eco-friendly nature and rapid strength gain, contributing to improved durability.

A Spoofing Detection Scheme Based on Elevation Masked-Relative Received Power in GPS Receivers using Multi-band Array Antenna

  • Junwoo Jung;Hyunhee Won;Sungyeol Park;Haengik Kang;Seungbok Kwon;Byeongjin Yu;Seungwoo Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Many spoofing detection studies have been conducted to cope with the most difficult types of deception among various disturbances of GPS, such as jamming, spoofing, and meaconing. In this paper, we propose a spoofing detection scheme based on elevation masked-relative received power between GPS L1 and L2 signals in a system using a multi-band array antenna. The proposed scheme focuses on enabling spoofing to be normally detected and minimizes the possibility of false detection in an environment where false alarms may occur due to pattern distortion among elements of an array antenna. The pattern distortion weakens the GPS signal strength at low elevation. It becomes confusing to detect a spoofing signal based on the relative power difference between GPS L1 and L2, especially when GPS L2 has weak signal strength. We propose design parameters for the relative power threshold including beamforming gain, the minimum received power difference between L1 and L2, and the patch antenna gain difference between L1 and L2. In addition, in order to eliminate the weak signal strength of GPS L2 in the spoofing detection process, we propose a rotation matrix that sets the elevation mask based on platform coordinates. Array antennas generally do not have high usefulness in commercial areas where receivers are operated alone, but are considered essential in military areas where GPS receivers are used together with signal processing for beamforming in the direction of GPS satellites. Through laboratory and live sky tests using the device under test, the proposed scheme with an elevation mask detects spoofing signals well and reduces the probability of false detection relative to that without the elevation mask.

Effect of Processing Gain on the Iterative Decoding for a Recursive Single Parity Check Product Code (재귀적 SPCPC에 반복적 복호법을 적용할 때 처리 이득이 성능에 미치는 영향)

  • Chon, Su-Won;Kim, Yong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.721-728
    • /
    • 2010
  • CAMC (constant amplitude multi-code) has a better performance of error correction in iterative decoding than SPCPC (single parity check product code). CAMC benefits from a processing gain since it belongs to a spread spectrum signal. We show that the processing gain enhances the performance of CAMC. Additional correction of bit errors is achieved in the de-spreading of iteratively decoded signal. If the number of errors which survived the iterative decoding is less than or equal to ($\sqrt{N}/2-1$), all of the bit errors are removed after the de-spreading. We also propose a stopping criterion in the iterative decoding, which is based on the histogram of EI (extrinsic information). The initial values of EI are randomly distributed, and then they converge to ($-E_{max}$) or ($+E_{max}$) over the iterations. The strength of the convergence reflects how successfully error correction process is performed. Experimental results show that the proposed method achieves a gain of 0.2 dB in Eb/No.

A Study on the Performance Evaluation of Polarization Diversity in Heavy Density Urban (고밀집 도심에서의 편파 다이버시티 성능 분석 연구)

  • Ihm, Jong-Tae;Kim, Sung-Jin;Kwon, Bum
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.578-588
    • /
    • 1998
  • In this paper, we analyzed the propagation characteristics of polarization diversity in the view of diversity gain, cross correlation coefficient and average received signal strength, and compared it with those of space diversity. From the results, we could confirm that in the care of line of sight(LOS), space diversity gain is bigger than polarization diversity gain by 2 dB and the diversity gain of mobile transmitting with 90 degree is bigger than that of mobile transmitting with 45 degree by 1 dB. However, in the area of non-line of sight(NLOS), the diversity gains were all most the same in two diversity schemes and in specular cases, polarization diversity showed better performances. Also it was verified that under the NLOS conditions, diversity gain of mobile transmitting with 45 degree was at least 1 dB bigger than that of mobile transmitting with 90 degree.

  • PDF

A Study on Self-tunning of PID Controller using Neural Network Theory (신경망이론을 이용한 PID제어기의 자기동조에 관한 연구)

  • Jun, Kee-Young;Hahm, Nyoun-Kun;Sung, Nark-Kuy;Lee, Seung-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2610-2612
    • /
    • 1999
  • In controlling vector of induction motor, PID controller is required much time as the expert should control manually a gain of controller according to plant or a change of circumstances. Accordingly, this paper has gotten a gain of PID controller used neural network by self-funning method in order to settle above problem. The neural network can describe an input/output features in spite of non-linear system which is hard to get mathematical model by controlling the strength of connection by learning. It has a strong character against a distortion and noise of input information, and is suitable modeling of diver-variable system which is composed of several input/output. This paper has represented the self-tunning method for gain of PID controller used neural network when using PID controller to control speed of induction motor, and has checked strong characters against distortion and noise of input information through simulation.

  • PDF

Theatrical Research an Generated Power of Float-Counterweight Wave Converters (부유체-균형추 파력발전장치의 전력에 대한 이론적 연구)

  • Lee, Sung-Bum;Lee, Seung-Keon;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.26-32
    • /
    • 2015
  • The authors are developing a motion of floater body type wave energy converter of the float-counterweight system. This consists of the driving pulley, wire, float and counterweight suspended from idler pulleys and rachet mechanism. Though it has succeeded in solving the major structural strength problem in which the floats would slam against adjacent structure(s) by wave load acting horizontally. In order to overcome this problem. We propose a new system in which the wire transmitting the power is wound around the pulleys and the float receiving the wave power is pulled by the wire from both its upper and lower ends to avoid the occurrence of slackening during the wave cycle. In the paper, we developed the dynamics model for the proposed system. Energy gain has been calculated for realistic wave conditions and compared with the original float-counterweight device. The important differences from the float-counterweight system are that (1) both upward and downward motions of water surface can be utilized without problem. (2) slackening of energy gain and wire tension are effectively suppressed, and (4) for the same time averaged energy gain, the maximum wire tension is fairly lowered.

A Fast RSSI using Novel Logarithmic Gain Amplifiers for Wireless Communication

  • Lee, Sung-Ho;Song, Yong-Hoon;Nam, Sang-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.1
    • /
    • pp.22-28
    • /
    • 2009
  • This paper presents a fast received signal strength indicator (RSSI) circuit for wireless communication application. The proposed circuit is developed using power detectors and an analog-to-digital converter to achieve a fast settling time. The power detector is consisted of a novel logarithmic variable gain amplifier (VGA), a peak detector, and a comparator in a closed loop. The VGA achieved a wide logarithmic gain range in a closed loop form for stable operation. For the peak detector, a fast settling time and small ripple are obtained using the orthogonal characteristics of quadrature signals. In $0.18-{\mu}m$ CMOS process, the RSSI value settles down in $20{\mu}s$ with power consumption of 20 mW, and the maximum ripple of the RSSI is 30 mV. The proposed RSSI circuit is fabricated with a personal handy-phone system transceiver. The active area is $0.8{\times}0.2\;mm^2$.