• Title/Summary/Keyword: Strength Gain

Search Result 339, Processing Time 0.028 seconds

Explosion-proof Properties of High Strength Steel Fiber Reinforced Concrete made with Contents of Steel Fiber (섬유혼입율 변화에 따른 고강도 섬유보강 콘크리트의 방폭특성)

  • Han, Cheon-Goo;Kim, Seong-Soo;Park, Goo-Byeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.129-136
    • /
    • 2000
  • In the side of military purpose, the explosion proof concrete, which contributes to protect the military facilities from damages due to the explosion of bomb and to maintain their shapes, is required to develop, Therefore. in this paper, mechanical and explosion-proof properties of concrete are tested under various steel fiber contents and member size. According to the experimental results, compressive, tensile and flexural strength gain higher levels with an increase in fiber contents. It shows that energy bearing capacities are higher with an increase in fiber contents. Especially. it is confirmed that slurry infiltrated fiber concrete(SIFCON) gains high strength and has high energy bearing capacities. SIFCON is expected to be applied in the construction of explosion proof structures.

  • PDF

A Design Guide for Composite Laminates by the Compressive after Impact Tests (충격후 잔류압축강도시험에 의한 복합재료 적층판의 설계)

  • 정태은;박경하;류정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2105-2113
    • /
    • 1995
  • The compressive tests under impact conditions were performed to establish a design guide for impact damage tolerance. The composition of layup was selected for the real cases of composite aircraft structure. The energy level of visible of visible damage threshold was determined as 7 Joules. It was found that the normalized bending stiffnesses in the direction of closely fixed boundary affected the area of damage. Graphite/epoxy used in the tests exhibited 60% reduction in compression strength at the energy level of visible damage threshold. Wet-conditioned specimens represented 9% reduction in residual compressive strength in comparison with room temperature ambient specimens. In this study, a design factor of 2.1 was proposed for the low velocity impact damage.

A Study on the Energy Dissipation Capacity of Precast Concrete Beam-Column Connection using DDC (DDC를 활용한 건식 보-기둥 모멘트 접합부의 내진 성능에 관한 연구)

  • Hong, Sung-Gul;Lee, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.85-88
    • /
    • 2004
  • In this study, a simple moment-resisting precast concrete beam-column connection is proposed for highly seismic zone using dywidag ductile rod [DDC]. DDC is superior system for ductility, energy dissipation capacity, connection strength, and drift capacity. A study was carried out to investigate the connection behavior subjected to cyclic inelastic loading. Four Precast beam-column interior connections and one monolithic connection will be tested. The variables will be examined were the strength relationship between joint's ductile rod and beam reinforcement for gain energy dissipation capacity. The specimens will be tested only reverse cyclic loading in accordance with a prescribed displacement history. Connection performance is evaluated on the basis of ductility, energy dissipation capacity, connection strength, and drift capacity. the precast connection using DDC is capable of matching of exceeding the performance of the monolithic connection and thereby provides moment-resisting behavior.

  • PDF

Material Properties of Grout Using Alumina Cement and Anhydrite (알루미나 시멘트와 무수석고를 이용한 그라우트의 재료적 특성)

  • Hong, Ki-Nam;Jung, Jin-Yeong;Han, Sang-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.59-64
    • /
    • 2011
  • This paper presents the research results performed to develope the shrinkage-free grout with high early strength. Alumina cement and anhydrite were utilized as the expensive tool to gain the shrinkage-free grout. The compressive strength, length change, and ettringite formation of the grout were investigated with compressive test, length change test, and X-ray diffraction. The more anhydrite was added into the grout, the larger the early expansion of the grout. In addition, the more anhydrite formated the more ettringite. From this study, It was conformed that the grout mixture with shrinkage-free property and high early strength is the mixture with the ratio of alumina cement and anhydrite of 40:60 by weight.

Analytical Study on Ultimate Design Method of Tube Flange Joints with the Rib Plate Using the High Strength Bolt (리브 붙은 고력볼트 강관플랜지 이음의 극한 설계방법에 관한 해석적 연구)

  • Kim, Seong Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.537-547
    • /
    • 2000
  • The tube flange joint often used in the field is a kind of tensional joint method using the high strength bolts. Transferring stress is conducted by high axial pressure between each part of material that is produced by twisting the high strength bolts. And historical characteristics of the flange joint have not been studied sufficiently and it is difficult to say that the design method is established definitely. Therefore new method using ultimate strength is need to be suggested to solve there problems in using flange joint. The purposes in this study are to gain the data base for establishing design method of joint in the form like figure1 and survey whether the joint of tube flange with non-equal diameter can be designed or not in the form like rib or ring.

  • PDF

Characteristics of Strength and Durability of Hwangto-Concrete according to its Mixing Condition (황토 콘크리트의 배합조건에 따른 강도성상 및 내구성)

  • Hwang, Hey Zoo;Roh, Tae Hak;Kim, Jin Il
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.55-60
    • /
    • 2008
  • The purpose of this study is to increase the use of Hwangto and examine the strength according to what it is compounded with. Hwangto-concrete containing Hwanto without cement nor organic chemical products were compared to the traditional cement concrete through some durability experiments. We expect to gain more knowledge on the potentials of Hwangto-concrete as an architectural source. 1) As Hwangto binder amount rises, the value of slump increases too. The reason is that the increase of the quantity of cement causes the increase of the amount of material and the decrease of the amount of aggregate. 2) When the mixed component into Hwangto-concrete remains at 2%, the compress strength is generally dispersed high along the per unit fission, in case the amount of which is at $400(g/m^3)$. The highest compress strength is 39MPa. It means that it can be applied to common structures and we need to conduct a basic property test to ensure the strength and fluidness. 3) Hwangto-concrete is expected to be highly used in the ocean structure and chemical industry because it has better resistance to sulfuric acid and to hydrochloric acid than the cement-concrete has. The result of this study is as follows. It is expected that Hwangto-concrete will be widely applied and further research on its durability and tests for its basic substantial characteristics based on future component added to it.

A STUDY REPAIRED JOINT STRENGTH OF COMPLETE DENTURE (의치수리(義齒修理)에 있어 파절접합부(破折接合部)의 조작형태(造作形態)가 의치(義齒)의 결합력(結合力)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Lee Woo-Hyun;Heo Seong-Joo;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.101-110
    • /
    • 1991
  • The purpose of this study was to compare the repaired joint strength among several edge profiles after denture repair. For this study, eight edge profiles were used for repair methods and five self-curing resin brands were used for repair materials. Break away loads were tested after 1 hr., 24 hrs. and 1 week. Instron was used for testing the transverse strength of repaired specimen. The results were as follows. 1. Repaired joint strength was about 35-65% of that of original specimen. 2. Joint strengths of round, inverse knife, inverse rabbit, lap ogee joint were higher tnan that of traditional simple butt joint 3. Joint strength of the simple butt joint was low significant. 4. Joint strengths after 1 hr. specimen were lower than those of 24 hrs. and 1 week specimens in joint strengths. 5. There were no significant differences between 24 hrs. and 1 week specimens in joint strengths. 6. It look more than 24 hours to gain satisfactory physical property after repairing the fractured denture base when self-curing resin was used for repair.

  • PDF

Experimental and SEM Analyses of Ground Fly Ash in Concrete

  • Brueggen, Beth;Kang, Thomas H.K.;Ramseyer, Chris
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.51-54
    • /
    • 2010
  • Fly ash is used in concrete to improve the fresh and hardened properties of concrete, including workability, initial hydration temperature, ultimate strength and durability. A primary limitation on the use of large quantities of fly ash in blended cement concrete is its slow rate of strength gain. Prior studies investigated the effects of grinding fly ash and fly ash fineness on the performance of concrete containing fly ash. This study aims to discover the sources of those effects, to verify the compressive strength behavior of concrete made with raw and processed Class C fly ash, and to investigate the properties of fly ash particles at the microscopic level. Concrete cylinder test results indicate that grinding fly ash can significantly benefit the early age strength as well as the ultimate strength of concrete with ground fly ash. Therefore, it is demonstrated that grinding fly ash increases its reactivity. Scanning Electron Microscopy was then used to investigate the physical effects of the grinding process on the fly ash particles in order to identify the mechanism by which grinding leads to improved concrete properties.

Study on the durability of fiber reinforced plastic by moisture aborsoption (흡수에 의한 FRP의 내구성에 관한 연구)

  • 문창권;구자삼
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.48-56
    • /
    • 1997
  • This work has been investigated in order to study the influence of the moisture absorption on the mechanical pf the glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites. The types of glass fiber used in the glass fiber/epoxy resein composites were randomly oriented fiber and plain fabric fiber. And carbon fiber.epoxy resein composites was laminated with fabric prepreg which was formed with carbon fiber and epoxy resein. Both composites were immersed up to 100 days in distilled water at $80^{\circ}C$, and then dried up to 3 days in an oven at 80$80^{\circ}C$. Both composites were measured for the weight gain of water(wt.%) and tensile strength through immersion and dry time. Consequently, it was found that the tensile strength of thw glass fiber/epoxy resein composites and the carbon fiber/epoxy resein composites were reduced proportionally to the moisture absortion rate. Also, the tensile strength of glass fiber composites was decreased more than that of the carbon fiber composites. Additionally, it was found that the tensile strength of all composites which decreased by moisture absorption were partly recovered by drying in an oven at 80$80^{\circ}C$.

  • PDF

Corrosion and Strength Degradation Characteristics of 1.25Cr-0.5Mo Steel under SO2 Gas Environment (SO2 가스 환경 하에서 1.25Cr-0.5Mo 강의 부식 및 강도 저하 특성)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.3
    • /
    • pp.149-156
    • /
    • 2018
  • The corrosion and strength degradation characteristics of 1.25Cr-0.5Mo steels were studied under $650^{\circ}C$ in $76%N_2+6%O_2+16%CO_2+2%SO_2$ gas condition up to 500 hrs. Corroded specimens were characterized by weight gain, scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDS), and X-ray diffraction(XRD). The tensile test was conducted to evaluate the mechanical strength and fracture mode with corrosion at high temperature. As the results of the experiments, thick Fe-rich oxide layers over $200{\mu}m$ were formed on the surface within 500 hrs. The thick oxide layers are formed with reduction of the cross-sectional area of the specimens. Thus, the strength tended to decrease with reduction of the cross-sectional area.