• Title/Summary/Keyword: Street Space

Search Result 372, Processing Time 0.023 seconds

Aesthetic Experience of Streetscape in Syarosu-gil as Urban Commercial Alleyway (도심 골목상권으로서 샤로수길 가로 경관의 미적 경험)

  • Lim, Hansol;Pae, Jeong-Hann
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.125-137
    • /
    • 2021
  • How can we explain the phenomenon of small, old alleyways in the city becoming rising commercial places attracting people from an aesthetic perspective? This research discusses distinctive aesthetic experiences of urban commercial alleyways, which are located on inner roads and consist of small-scale stores and explore the specific aspects of Sharosu-gil, located in Gwanak-gu, Seoul. The aesthetic experience of urban commercial alleyways is generated by the contrast with the refined urban fabric along main roads in terms of space, the gap between the old and the new, and the antagonism between the known and the less known. The approach to Sharosu-gil consists of the high-rise buildings along the main road built in the 2000s, then encountering low-rise buildings on inside roads built from the late 1970s to the present. Therefore, it is judged that the site has sufficient conditions to generate the aesthetic experience as an urban commercial alleyway. As a result of analyzing the street improvement projects, first, the official announcement of the name 'Sharosu-gil' was interpreted as an escape from the place specificity and garnered the acquisition of the characteristics of an alternative. Secondly, the improvement project for old-established signboards was interpreted as harmony between the new and the old and the loss of temporality. Thirdly, in the pedestrian priority road project, the pavement was interpreted as a reinforcement of the identity as an alleyway and the visualization of the area. Since the reality of urban commercial alleyways depends on the user's visiting, it is necessary to interpret alleyways from the perspective of the senses and aesthetics, not just from social phenomena or capital logic perspective. The study will cast implications for relevant schemes and data-driven research.

Analysis of Human Thermal Environment in an Apartment Complex in Late Spring and Summer - Magok-dong, Gangseo-gu, Seoul- (아파트 단지의 늦봄·여름철 인간 열환경 분석 - 서울특별시 강서구 마곡동 -)

  • Park, Sookuk;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.68-77
    • /
    • 2022
  • The human thermal environment in an apartment complex located in Seoul was quantitatively analyzed to devise methods to modify human heat-related stresses in landscape and urban planning. Microclimatic data (air temperature, relative humidity, wind speed, and short- and long-wave radiation) were collected at 6 locations [Apt-center, roof (cement), roof (grass), ground, playground, and a tree-lined road] in the late spring and summer, and the data were used to estimate the human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI). As a result, the playground location had the highest thermal environment, and the roof (grass) location had the lowest. The mean difference between the two locations was 0.8-1.1℃ in air temperature, 1.8-4.0% in relative humidity, and 7.5-8.0℃ in mean radiant temperature. In open space locations, the wind speed was 0.4-0.5 ms-1 higher than others. Also, a wind tunnel effect happened at the Apt-center location during the afternoon. For the human thermal sensation, PET and UTCI, the mean differences between the playground and roof (grass) locations were: 5.2℃ (Max. 11.7℃) in late spring and 5.4℃ (Max. 18.1℃) in summer in PET; and 3.0℃ (Max. 6.1℃) in late spring and 2.6℃ (Max. 9.8℃) in summer in UTCI. The mean differences indicated a level change in PET and 1/2 level in UTCI, and the maximum differences showed greater changes, 2-3 levels in PET, and 1-1.5 levels in UTCI. Moreover, the roof (grass) location gave 4.6℃ PET reduction and a 2.5℃ UTCI reduction in late spring, and a 4.4℃ PET reduction and a 2.0℃ UTCI reduction in the summer when compared with the roof (cement) location, which results in a 2/3 level change in PET and a 1/3 level in UTCI. Green infrastructure locations [roof (grass), ground, and a tree-lined road] were not statistically significant in the reduction of PET and UTCI in thermal environment modifying effects. The implementation of green infrastructure, such as rooftop gardens, grass pavement, and street tree planting, should be adopted in landscape planning and be employed for human thermal environment modification.