• Title/Summary/Keyword: Street Information

Search Result 392, Processing Time 0.024 seconds

Physiological, Biochemical, and Adsorption Characteristics of Abies holophylla, Acer buergerianum, Pinus densiflora, and Quercus variabilis under Elevated Particulate Matter (미세먼지 처리에 따른 전나무, 중국단풍, 소나무, 굴참나무의 생리⋅생화학적 반응 및 흡착 특성)

  • Sang-heon Woo;Koeun Lee;Jongkyu Lee;Myeong Ja Kwak;Yea Ji Lim;Su Gyeong Jeong;Sun Mi Je;Hanna Chang;Jounga Son;Chang-Young Oh;Kyongha Kim;Su Young Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.57-70
    • /
    • 2023
  • In recent years, the frequency of warnings about particulate matter (PM) has gradually increased in Korea, along with an increase in its intensity. Because of their vast surface area, reactivity to external particles, and characteristics of their leaves, urban trees can act as biofilters, reducing PM pollution. However, the air pollutant PM can cause various types of damage not only to human health but also to vegetation. Studies performed to date on the responses of trees to PM are still insufficient. Here, we analyzed the correlation between PM adsorption and physiological and biochemical responses of four major street tree species, namely, Abies holophylla, Acer buergerianum, Pinus densiflora, and Quercus variabilis, under conditions of approximately 300 ㎍ m-3 of fly ash emissions using a phytotron. The results showed that the physiological and biochemical responses and PM adsorption differed depending on the tree species. In correlation analysis, it was confirmed that there were positive correlations between physiological factors, and PM adsorption on adaxial leaf surfaces negatively impacted the physiological characteristics. This study provides fundamental information for selecting tree species to reduce PM pollution and develop sustainable urban forests.

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.