• 제목/요약/키워드: Streamflow Forecasting

검색결과 66건 처리시간 0.039초

인공신경망 이론을 이용한 소유역에서의 장기 유출 해석 (Forecasting Long-Term Steamflow from a Small Waterhed Using Artificial Neural Network)

  • 강문성;박승우
    • 한국농공학회지
    • /
    • 제43권2호
    • /
    • pp.69-77
    • /
    • 2001
  • An artificial neural network model was developed to analyze and forecast daily steamflow flow a small watershed. Error Back propagation neural networks (EBPN) of daily rainfall and runoff data were found to have a high performance in simulating stremflow. The model adopts a gradient descent method where the momentum and adaptive learning rate concepts were employed to minimize local minima value problems and speed up the convergence of EBP method. The number of hidden nodes was optimized using Bayesian information criterion. The resulting optimal EBPN model for forecasting daily streamflow consists of three rainfall and four runoff data (Model34), and the best number of the hidden nodes were found to be 13. The proposed model simulates the daily streamflow satisfactorily by comparison compared to the observed data at the HS#3 watershed of the Baran watershed project, which is 391.8 ha and has relatively steep topography and complex land use.

  • PDF

댐저수지군의 최적연계운영을 고려한 유출예측시스템모형 구축을 위한 기초적 연구 (A Basic Study on the Flood-Flow Forecasting System Model with Integrated Optimal Operation of Multipurpose Dams)

  • 안승섭
    • 한국농공학회지
    • /
    • 제37권3_4호
    • /
    • pp.48-60
    • /
    • 1995
  • A flood - flow forecasting system model of river basins has been developed in this study. The system model consists of the data management system(the observation and telemetering system, the rainfall forecasting and data-bank system), the flood runoff simulation system, the reservoir operation simulation system, the flood forecasting simulation system, the flood warning system and the user's menu system. The Multivariate Rainfall Forecasting model, Meteorological factor regression model and Zone expected rainfall model for rainfall forecasting and the Streamflow synthesis and reservoir regulation(SSARR) model for flood runoff simulation have been adopted for the development of a new system model for flood - flow forecasting. These models are calibrated to determine the optimal parameters on the basis of observed rainfall, 7 streamfiow and other hydrological data during the past flood periods.

  • PDF

가역접근법을 이용한 일유출량 자료의 비선형 예측 (Nonlinear Forecasting of Daily Runoff Using Inverse Approach Method)

  • 이배성;정동국;정태성;이상진
    • 한국수자원학회논문집
    • /
    • 제39권3호
    • /
    • pp.253-259
    • /
    • 2006
  • 기존의 거의 모든 수문학적 연구에 있어서, 시스템의 특성을 파악한 뒤 예측을 실시하는 표준접근법이 채택되어왔다. 그러나 최근 들어 시스템의 특성분석에 앞서 예측을 실시하고, 상태공간 매개변수가 시스템의 특성분석단계가 아닌 예측단계에서 평가되는 가역접근법이 제안되었다. 본 연구에서는 최근에 제안된 가역접근법과 기존에 널리 적용되어온 표준접근법을 이론적 카오스 시계열과 Idaho주 Bear강의 일유출량 자료에 적용함으로써, 가역접근법의 적용성을 검토하고 카오스 시계열의 특성을 알아보았으며, 카오스이론이 적용된 비선형 예측기법으로는 부분근사화 기법을 이용하였다. 카오스 특성 분석을 통해, 이론적 카오스 시계열과 Idaho주 Bear강의 일유출량 시계열 자료 모두에서 카오스 특성이 나타남을 알 수 있었다. 200일에 대한 1, 3, 5일 예측 결과, 가역접근법이 표준접근법에 비해 우수함을 알 수 있었다.

유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구 (Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria)

  • 자크로프 마샵;보첼키아 하미드;스탬바울 마대니;김성원;싱 비제이
    • 한국수자원학회논문집
    • /
    • 제53권6호
    • /
    • pp.395-408
    • /
    • 2020
  • 본 연구논문은 북부아프리카의 알제리에 위치한 하천유역에서 다중선행일 유출량의 예측을 위하여 진화적 최적화기법과 k-fold 교차검증을 결합한 세 개의 서로 다른 기계학습 접근법 (인공신경망, 적응 뉴로퍼지 시스템, 그리고 웨이블릿 기반 신경망)을 개발하고 적용하는 것이다. 인공신경망과 적응 뉴로퍼지 시스템은 root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), 그리고 peak flow criteria (PFC) 의 네 개의 통계지표를 기반으로 하여 모형의 훈련 및 테스팅 결과 유사한 모형수행결과를 나타내었다. 웨이블릿 기반 신경망모형은 하루선행일 테스팅의 결과 RMSE = 8.590 ㎥/sec 과 PFC = 0.252로 분석되어서 인공신경망의 RMSE = 19.120 ㎥/sec, PFC = 0.446 과 적응 뉴로퍼지 시스템의 RMSE = 18.520 ㎥/sec, PFC = 0.444 보다 양호한 결과를 나타내었고, NSE와 R의 값도 웨이블릿 기반 신경망모형이 우수한 것으로 나타났다. 그러므로 웨이블릿 기반 신경망은 알제리 세이보스 하천에서 다중선행일의 예측을 위하여 효율적인 도구로 사용할 수 있다.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(I)
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

웨이블릿 패킷변환과 신경망을 결합한 하천수위 예측모델 (River Stage Forecasting Model Combining Wavelet Packet Transform and Artificial Neural Network)

  • 서영민
    • 한국환경과학회지
    • /
    • 제24권8호
    • /
    • pp.1023-1036
    • /
    • 2015
  • A reliable streamflow forecasting is essential for flood disaster prevention, reservoir operation, water supply and water resources management. This study proposes a hybrid model for river stage forecasting and investigates its accuracy. The proposed model is the wavelet packet-based artificial neural network(WPANN). Wavelet packet transform(WPT) module in WPANN model is employed to decompose an input time series into approximation and detail components. The decomposed time series are then used as inputs of artificial neural network(ANN) module in WPANN model. Based on model performance indexes, WPANN models are found to produce better efficiency than ANN model. WPANN-sym10 model yields the best performance among all other models. It is found that WPT improves the accuracy of ANN model. The results obtained from this study indicate that the conjunction of WPT and ANN can improve the efficiency of ANN model and can be a potential tool for forecasting river stage more accurately.

FLASH FLOOD FORECASTING USING ReMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART I : MODEL DEVELOPMENT

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.113-122
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.

  • PDF

Low-flow simulation and forecasting for efficient water management: case-study of the Seolmacheon Catchment, Korea

  • Birhanu, Dereje;Kim, Hyeon Jun;Jang, Cheol Hee;ParkYu, Sanghyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.243-243
    • /
    • 2015
  • Low-flow simulation and forecasting is one of the emerging issues in hydrology due to the increasing demand of water in dry periods. Even though low-flow simulation and forecasting remains a difficult issue for hydrologists better simulation and earlier prediction of low flows are crucial for efficient water management. The UN has never stated that South Korea is in a water shortage. However, a recent study by MOLIT indicates that Korea will probably lack water by 4.3 billion m3 in 2020 due to several factors, including land cover and climate change impacts. The two main situations that generate low-flow events are an extended dry period (summer low-flow) and an extended period of low temperature (winter low-flow). This situation demands the hydrologists to concentrate more on low-flow hydrology. Korea's annual average precipitation is about 127.6 billion m3 where runoff into rivers and losses accounts 57% and 43% respectively and from 57% runoff discharge to the ocean is accounts 31% and total water use is about 26%. So, saving 6% of the runoff will solve the water shortage problem mentioned above. The main objective of this study is to present the hydrological modelling approach for low-flow simulation and forecasting using a model that have a capacity to represent the real hydrological behavior of the catchment and to address the water management of summer as well as winter low-flow. Two lumped hydrological models (GR4J and CAT) will be applied to calibrate and simulate the streamflow. The models will be applied to Seolmacheon catchment using daily streamflow data at Jeonjeokbigyo station, and the Nash-Sutcliffe efficiencies will be calculated to check the model performance. The expected result will be summarized in a different ways so as to provide decision makers with the probabilistic forecasts and the associated risks of low flows. Finally, the results will be presented and the capacity of the models to provide useful information for efficient water management practice will be discussed.

  • PDF