Browse > Article
http://dx.doi.org/10.5322/JESI.2015.24.8.1023

River Stage Forecasting Model Combining Wavelet Packet Transform and Artificial Neural Network  

Seo, Youngmin (Department of Constructional Environmental Engineering, Kyungpook National University)
Publication Information
Journal of Environmental Science International / v.24, no.8, 2015 , pp. 1023-1036 More about this Journal
Abstract
A reliable streamflow forecasting is essential for flood disaster prevention, reservoir operation, water supply and water resources management. This study proposes a hybrid model for river stage forecasting and investigates its accuracy. The proposed model is the wavelet packet-based artificial neural network(WPANN). Wavelet packet transform(WPT) module in WPANN model is employed to decompose an input time series into approximation and detail components. The decomposed time series are then used as inputs of artificial neural network(ANN) module in WPANN model. Based on model performance indexes, WPANN models are found to produce better efficiency than ANN model. WPANN-sym10 model yields the best performance among all other models. It is found that WPT improves the accuracy of ANN model. The results obtained from this study indicate that the conjunction of WPT and ANN can improve the efficiency of ANN model and can be a potential tool for forecasting river stage more accurately.
Keywords
River stage forecasting; Wavelet packet transform; Time series decomposition; Artificial neural network; Hybrid model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Adamowski, J., Prasher, S. O., 2012, Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data, J. Water Land Dev., 17, 89-97.
2 Amiri, G. G., Asadi, A., 2009, Comparison of different methods of wavelet and wavelet packet transform in processing ground motion records, Int. J. Civil Eng., 7(4), 248-257.
3 Baratti, R., Cannas, B., Fanni, A., Pintus, M., Sechi, G. M., 2003, River flow forecast for reservoir management through neural networks, Neurocomputing, 55(3-4), 421-437.   DOI
4 Calvo, B., Savi, F., 2009, Real-time flood forecasting of the Tiber river in Rome, Nat. Hazards, 50(3), 461-477.   DOI
5 Chang, F. J., Chiang, Y. M., Chang, L. C., 2007, Multi-step-ahead neural networks for flood forecasting, Hydrolog. Sci. J., 52(1), 114-130.   DOI
6 Chang, F. J., Hwang, Y. Y., 1999, A self-organization algorithm for real-time flood forecast, Hydrol. Process., 13(2), 123-138.   DOI
7 Chen, P., Chen, H., Ye, R., 2010, Chaotic wind speed series forecasting based on wavelet packet decomposition and support vector regression, Proceedings of IPEC 2010 Conference, Singapore, 256-261.
8 Cigizoglu, H. K., Kisi, O., 2005, Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data, Nord. Hydrol., 36(1), 49-64.
9 Dawson, C. W., Wilby, R. L., 2001, Hydrological modelling using artificial neural networks, Prog. Phys. Geogr., 25(1), 80-108.   DOI
10 Deshmukh, R. P., Ghatol, A. A., 2010, Short term flood forecasting using general recurrent neural network modeling a comparative study, Int. J. Comput. Appl., 8(12), 5-9.   DOI
11 Duan, Q., Sorooshian, S., Gupta, V. K., 1992, Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28(4), 1015-1031.   DOI
12 Fan, X., Zuo, M. J., 2006, Gearbox fault detection using Hilbert and wavelet packet transform, Mech. Syst. Signal Pr., 20, 966-982.   DOI
13 Gokhale, M. Y., Khanduja, D. K., 2010, Time domain signal analysis using wavelet packet decomposition approach, Int. Commun. Network Syst. Sci., 3(3), 321-329.
14 Grayson, R. B., Moore, I. D., McMahon, T. A., 1992, Physically based hydrologic modeling: 2. Is the concept realistic?, Water Resour. Res., 28(10), 2659-2666.   DOI
15 Kim, S., Seo, Y., Singh, V. P., 2013a, Assessment of pan evaporation modeling using bootstrap resampling and soft computing methods, J. Comput. Civ. Eng., 1943, DOI:10.1061/(ASCE)CP-5487.0000367.
16 Gunther, F., Fritsch, S., 2010, Neuralnet: Training of neural networks, R J., 2(1), 30-38.
17 Jia, Y., Culver, T. B., 2006, Bootstrapped artificial nerual networks for synthetic flow generation with a small data sample, J. Hydrol., 331(3-4), 580-590.   DOI
18 Karunasinghe, D. S. K., Liong, S. Y., 2006, Chaotic time series prediction with a global model: artificial neural network, J. Hydrol., 323(1-4), 92-105.   DOI
19 Kim, S., Shiri, J., Kisi, O., 2012, Pan evaporation modeling using neural computing approach for different climatic zones, Water Resour. Manag., 26(11), 3231-3249.   DOI
20 Kim, S., Shiri, J., Kisi, O., Singh, V. P., 2013, Estimating daily pan evaporation using different data-driven methods and lag-time patterns, Water Resour. Manag., 27(7), 2267-2286.   DOI
21 Kisi, O., 2007, Streamflow forecasting using different artificial neural network algorithms, J. Hydrol. Eng., 12(5), 532-539.   DOI
22 Lei, J., Meyer, Y., Ryan, R. D., 1994, Wavelets: Algorithms & applications, Math. Comput., 63, 822, DOI:http://dx.doi.org/10.2307/2153305.   DOI
23 Liu, H., Tian, H., Pan, D., Li, Y., 2013, Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks, Appl. Energ., 107, 191-208.   DOI   ScienceOn
24 Mishra, A., Hata, T., Abdelhadi, A. W., 2004, Models for recession flows in the upper Blue Nile River, Hydrol. Process., 18(15), 2773-2786.   DOI
25 Patel, D., Parekh, D. F., 2014, Flood forecasting using adaptive neuro-fuzzy inference system (ANFIS), Int. J. Eng. Trend. Tech., 12(10), 510-514.   DOI
26 Nejad, F. H., Nourani, V., 2012, Elevation of wavelet denoising performance via an ANN-based streamflow forecasting model, Int. J. Comput. Sci. Manage. Res., 1(4), 764-770.
27 Nguyen, P. K. T., Chua, L. H. C., 2012, The data-driven approach as an operational real-time flood forecasting model, Hydrol. Process., 26(19), 2878-2893.   DOI
28 Okkan, U., 2012, Using wavelet transform to improve generalization capability of feed forward neural networks in monthly runoff prediction, Sci. Res. Essays, 7(17), 1690-1703.
29 Raghavendra, N. S., Deka, P. C., 2015, Forecasting monthly groundwater level fluctuations in coastal aquifers using hybrid wavelet packet-support vector regression, Cogent Eng., 2(1), DOI:10.1080/23311916.2014.999414.   DOI
30 Ravikumar, K., Tamilselvan, S., 2014, On the use of wavelets packet decomposition for time series prediction, Appl. Math. Sci., 8(58), 2847-2858.
31 Seo, Y., Kim, S., Kisi, O., Singh, V. P., 2015a, Daily water level forecasting using wavelet decomposition and artificial intelligence techniques, J. Hydrol., 520, 224-243.   DOI
32 Seo, Y., Kim, S., Singh, V. P., 2013a, Flood forecasting and uncertainty assessment using bootstrapped ANFIS, Proceedings of 6th Conference of Asia Pacific Association of Hydrology and Water Resources, Seoul, South Korea, 1-8.
33 Seo, Y., Kim, S., Singh, V. P., 2015b, Multistep-ahead flood forecasting using wavelet and data-driven methods, KSCE J. Civil Eng., 19(2), 401-417.   DOI
34 Wang, W., Van Gelder, P., Vrijling, J. K., Ma, J., 2006a, Forecasting daily streamflow using hybrid ANN models, J. Hydrol., 324(1-4), 383-399.   DOI
35 Seo, Y., Park, K. B., Kim, S., Singh, V. P., 2013b, Application of bootstrap-based artificial neural networks to flood forecasting and uncertainty assessment, Proceedings of 6th International Perspective on Water Resources and the Environment, EWRI-ASCE, Izmir, Turkey.
36 Tiwari, M. K., Chatterjee, C., 2010a, Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks(BANNs), J. Hydrol., 382(1-4), 20-33.   DOI
37 Tiwari, M. K., Chatterjee, C., 2010b, Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN(WBANN) hybrid approach, J. Hydrol., 394(3-4), 458-470.   DOI
38 Wang, H. F., Huang, W. J., Wang, W. S., 2006b, Cuntan station of the Yangtze River annual runoff forecasting with set pair analysis method, J. Heilongjiang Hydraul. Eng. Coll., 33(4), 3-5.
39 Wu, C. L., Chau, K. W., Li, Y. S., 2009, Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques, Water Resour. Res., 45(8), W08432.   DOI