• Title/Summary/Keyword: Stream-water

Search Result 3,436, Processing Time 0.036 seconds

Restoration of the Stream Runoff by the Physical Deterministic Modeling and Formulation of Water Balance for the Catchment of Byungchun River in Chungcheong Province in Korea (물리 결정 모델링에 의한 충청도 병천천 유역의 하천 유출량 복원과 물 수지 수립)

  • KIM, Man-Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.37-53
    • /
    • 2008
  • This study has developed a water balance model for the catchment of Byungchun river using a BROOK90 4.4e physical deterministic water balance model with the long-term meterological data and stream run off data obtained from the basin of Byungchun river in Korea. It is intended that the validation model with calibrated model fitting parameter can build a long-term water balance plan for a period when meterological data are available but stream runoff data are not. Results of this study have satisfied the first expectation as an experiment for water balance modeling since measured stream runoff data have turned out to be very similar to simulated stream runoff data. Through the confirmation of model fitting parameters and validated simulation, water balance for the period of 1998 to 2006 has been restored. Unless the conditions of geomophology, vegetation, soil and land use change, meterological data alone can produce various hydrometeorological data related to stream runoff amount, soil water amount, and evapotranspiration. This study opens up a new horizon in restoring water balance in the past as well planning water balance in the present. The obtained results from this study are expected to be used in predicting future water balance in the wake of the changes in climate and vegetation in Korea.

Contamination of Stream and Reservoir Waters with Arsenic from Abandoned Gold Mine

  • Lee, Jin-Yong;Kim, Hee-Joung;Yang, Jai-E.
    • Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.33-40
    • /
    • 2008
  • Levels of arsenic in stream and reservoir waters affected by an abandoned gold mine were examined. The abandoned mine has been left without proper civil and remedial works preventing potential environmental hazards. Field and laboratory chemical analyses revealed that the stream waters downgradient from the mine area were severely contaminated with arsenic and furthermore the reservoir water, 2-3 km away from the mine, also contained substantial levels of As, far exceeding the Korean stream water standard. Relatively higher pH values (6.5-9.4) enhanced mobility of As and mainly sustained substantial As concentration in waters. Chemistries of the stream water, groundwater and reservoir water were dominated by two main factors including effects of mine effluent and anthropogenic agricultural activities. Considering that there has been a substantial As input to the reservoir and the reservoir water has been used for agricultural and domestic uses, immediate remedial works are essentially required.

Water Quality and Pollutions of River waters in Gwangju City (광주광역시 하천수의 수질 및 오염)

  • 오강호;고영구
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.287-297
    • /
    • 2003
  • To investigate water quality and pollution states of rivers in Gwangju city, total of 30 water samples were taken from the main stream of Yeongsan river, Hwangryong river and Gwangju stream in dry and flood seasons. Physico-chemical characteristics of above streams according to pH-Eh and Piper's diagrams we, typically, assigned to natural river water. In the streams, BOD, COD, T-N and T-P indicating water quality mostly increase toward downstream. Notably, water qualities in area near connection between the Gwangju stream and the main stream of Yeongsan river are polluted over V level in rivers and lakes water quality standard. The pollutions are influenced by lift and agricultural foul waters from Gwangju City and farming areas around upstream branches of the Yeongsan river, reasonably. Besides, heavy metals are below the standard in those streams. So, it is considered that the streams are polluted by not industrial but life/agricultural foul waters.

The effect of Combined Sewer Overflows on river's water quality

  • Bae, Hun Kyun
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • The effect of Combined Sewer Overflow on the river system was investigated throughout three preliminary field tests and three main ones. As a result of the study, Combined Sewer Overflow did not affect water qualities on the main stream since the concentration of the main stream did not significantly changed during rainfall events although the water quality of tributaries has rapidly deteriorated due to the influence of the Combined Sewer Overflow during rainfall events. The main cause of the result is that the flow rate of the tributaries is considerably lower than that of the main stream, so that the tributaries with deteriorated water quality during rainfall events did not significantly affect the quality of the actual main stream. Therefore, the water quality of the Kumho River is more affected by the wastewater treatment facilities that discharges water continuously to the main stream than pollutants from non-point pollution sources during rainfall events. As a result, managements for discharges from wastewater treatment facilities should be strengthened in order to improve the water quality of the river.

Primary Study for Ecologic Stream Development in Daejeon (대전광역시 생태하천 조성을 위한 기초연구)

  • Lee, Beum-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.467-471
    • /
    • 2006
  • At the current of the time, the ecologic stream is the most important concern of all the country. Daejeon metropolitan city performing the plan to secure the Daejeon cheon (stream) instream water as the 1st stage of the ecologic stream development plan for the Daejeon 3 main stream. During the performing the plan to secure the Daejeon cheon (stream) instream water, the water sources are decided to supply from Yudeng cheon and Daecheong Dam by the various water sources evaluation. For the investigation of flow and quality of instream water, I applicate the HEC-RAS and QUAL2EU. Instream water is proposed as the $10{\sim}30cm$ water depth and 2 degree water quality (lower the BOD 2.0 ppm) by the report of city. It is reasonable to the water depth objective, but the water quality objective is not reasonable because of the seasonal quality changes of supplied water. I suggest that the basin management plan include the non-point source elimination must comprised to the Daejeon ecologic stream project.

  • PDF

Effect of Water Pollution on the Irrigation Water (하천수질오염이 농업용수에 미치는 영향)

  • 나규환;이장훈;김치년
    • Environmental Analysis Health and Toxicology
    • /
    • v.6 no.3_4
    • /
    • pp.155-161
    • /
    • 1991
  • The water quality in Wonju stream, Seom river in Kangwon province and Bokha, Shindun stream in Kyeonggi province was investigated between the season of irrigation on July, 1990 and of non-irrigation on September in 1989. The results of water quality obtained from this study were as follows; As for water quality of the Wonju stream and the Seom river, the concentration of COD, T-N, SS and Cu, and for the Bokha, Shindun stream, the concentration of T-N, SS and Cu were exceeded standard levels of quality guideline of agricultural water use in the season of irrigation. However, in the water quality of Wonju and Bokha stream, the concentration of T-N , SS and Cu, and in the Seom river, the concentration of T-N, SS, Cu and Zn were exceeded standard levels of agricultural water quality in the season of non-irrigation. And the average water quality of the 4 streams were not suitable for agricultural water use. The comparison of the annual average water quality of the 4 streams for pH, DO, T-N and SS were in statistics significantly different with p values less than 0.01. When the average water quality between the season of irrigation and non-irrigation in each stream was compared, DO and COD in the Wonju stream, COD in the Seom river, pH, DO, T-N, SS and Cu in the Shindun stream showed a significant difference with p<0.01. The average in the sediment were; COD, 5.65∼26.53 ppm; Cu, 0.26∼0.49 ppm and Zn 0.95∼2.97 ppm. The concentration of three contaminants were markedly higher than the water quality. And the concentration of COD, Zn in the sediment showed a significant difference with p<0.01, and Cu showed a considerably significant difference with p<0.05.

  • PDF

Evaluation of Stream Water Quality to Select Target Indicators for the Management of Total Maximum Daily Loads (수질오염총량관리 대상물질 선정을 위한 하천수질 평가)

  • Park, Jun Dae;Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.630-640
    • /
    • 2013
  • It is one of the most critical steps identifying impaired waterbodies exactly in the selection of target water quality indicators for the management of Total Maximum Daily Loads (TMDLs). Excess ratio and excess level were applied and analyzed by the stream zone basis in order to evaluate water impairment for Nakdong, Geum, Youngsan and Seomjin rivers. Each river basin was divided into stream zones in the light of its watershed and waterbody characteristics. Selected water quality parameters discussed in this study were pH, DO, BOD, COD, SS, T-P, T-Coli and F-Coli. The excess ratios of the water quality parameters were used to discriminate water bodies that did not meet water quality standards. The excess levels were used to classify the degradation of water quality. The excess ratios and the excess levels to the water quality criteria of the medium influence areas were used for each stream zone. The results indicate that the excess ratios and the excess levels are varied on the stream zone in each river basin. Three parameters, pH, DO and SS, met water quality standards in all stream zones. The other five parameters indicated very high excess ratios in most waterbodies, and especially T-P and T-Coli revealed to be very high excess levels in some waterbodies. These parameters could be considered as major target indicators for the management of TMDLs.

Comparison of water qualities and pollutants discharged to the East sea of Korea from Namdae and Yeongok stream in the Gangneung city (강릉 남대천과 연곡천의 수질과 동해 연안으로 방류되는 오염물질의 량 비교)

  • Yoon Yi Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.1
    • /
    • pp.68-77
    • /
    • 2003
  • The Water quality of Namdae and Yeongok stream, located in the Kangnung City, and pollutants discharged to the east sea of Korea were investigated during april to November 2002 in order to understand the costal pollution phenomena. The water qualify grade of Namdae stream vary between II and V of water standard. On the other hand, that of Yeongok Stream is keeping I or II. The temporal and spacial variation of Namdae stream are higher than Yeongok stream. The water pollutants discharged to the east sea of Korea from Yeongok stream are lower 15.5 times for BOD, 2.6 times for COD, 1.7 times for T-N, 6.9 times for T-P than from Namdae stream, of which water flux are 1.4 times higher and contain much more of pollutants than Yeongok stream. It may have some effect on the costal ecosystem according to their pollutant flux.

  • PDF

Study on decentralized options of the in-stream flow for restoring the Gyobang cheon: application of the Urban Volume and Quality (UVQ) model to examine feasibilities in water quantity and quality (교방천 복원을 위한 분산형 유지유량 확보 방안 연구 (I): 수량.수질 타당성 검토를 위한 도시 물순환 모형 적용)

  • Shin, Sang-Min;Choi, Go-Eun;Lee, Sang-Eun;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.699-706
    • /
    • 2011
  • This study has a purpose of examining technical feasibility of supplying the in-stream flow for the Gyobang cheon by using treated water from small wastewater treatment facilities as a decentralized option. To do this, the water and contaminant flow in study areas of the Gyobang cheon are defined from the context of the integrated urban water cycle, and analyzed by using the Urban Volume and Quality (UVQ) model. First, the UVQ model was built for the study areas of the Gyobang cheon and calibrated with observation data. Second, the decentralized options of the in-stream flow was explored with consideration of availability of water sources. The UVQ simulation then led to selecting the best option which would meet the criteria of water quantity and quality. It was finally concluded that using water sources out of study areas 1 and 2, adjoining the upper part of the Gyobang cheon, in the decentralized manner can be a feasible option for in-stream flow. It also seems that the UVQ model is useful to understand the water cycle in study areas of the Gyobang cheon.

Urban Instream Flow Augmentation Using Reclaimed Water in Korea (하수처리수 재이용을 통한 도시하천 물순환 및 수질 개선)

  • Jee, Yong-Keun;Ahn, Jong-Ho;Lee, Jin-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.285-294
    • /
    • 2012
  • Current urban stream conditions and their restoration projects were investigated by surveying the urban stream management experts in 29 cities with high population density (more than 1,000person/$km^{2}$). The survey results showed that the ratio of covered urban streams decreased by 1.4% (from 14% to 12.6%) in the last 5 years through steady river restoration projects promoted by governments. Nonetheless, 36.3% of 369 urban streams surveyed still report stream depletion problems; therefore, more efforts to alleviate the problems caused by distorted water circulation of urban streams are still necessary. Water depletion in many local urban streams, unlike national rivers, is accelerated due to negligence in stream management, budget shortage, and other reasons. To prevent stream depletion, the use of reclaimed water is suggested as one of the prevention plans. When available amounts of reused sewage are estimated through actual available nationwide sewage discharges of each watershed and instream flow of stream, annual instream flow supply of 780 million $m^{3}$ is expected; 4.8% reduction in the pollution load of public sewer treatment facilities is expected; and the creation of new value through water reuse service is expected. Thus, it is important for the reviews of feasibility and alternatives of water reuse projects for flow augmentation to consider not only investment budget reductions, but also environmental aspects. Also it is necessary to provide the financial support of unified government with strict water quality management policy.