• Title/Summary/Keyword: Stream-water

Search Result 3,442, Processing Time 0.033 seconds

EVALUATION OF GROUNDWATER-STREAM INTERACTION IN AN URBAN STREAM, CHEONGGYECHEON, KOREA

  • Hyun Yun-Jung;Kim Yoon-Young;Lee Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.328-331
    • /
    • 2005
  • Cheonggyecheon, covered and Paved with concretes for about more than 50 years, is a losing stream crossing over the downtown of Seoul, Korea. Due to several environmental and economic Problems about the Cheonggyecheon area, the Cheonggyecheon restoration construction has started in 2003. In restoration of Cheonggyecheon, hydraulic barriers are to be installed so as to reduce stream depletion rates for maintaining the stream flow with supplying a certain amount of water. This study evaluates the groundwater-stream interaction by analyzing stream depletion rates of Cheonggyecheon. Results show that significant stream depletion occurs at the up-midstream where the Seoul subway lines are concentrated. Simulation results demonstrate that both horizontal and vertical hydraulic barriers impeding groundwater flow into subway lines are more efficient than a horizontal barrier only for stream depletion rate reduction.

  • PDF

Conservation Strategy on Stream Water Quality in the Mt. Bukhansan National Park(I) (북한산국립공원의 계류수질 보전 전략(I))

  • Park, Jae-Hyeon;Woo, Bo-Myeong;Kim, Oue-Ryong;Ahn, Hyun-Chul;Cho, Hyun-Seo;Choo, Gab-Chul;Kim, Choon-Sig;Choi, Hyung-Tae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.3
    • /
    • pp.30-37
    • /
    • 2001
  • This study was conducted to investigate physicochemical property changes from July 1998 to August 2001 in Mt. Bukhansan National Park. Four water sampling points were selected to measure the quality of stream water in the northeastern part of the Mt. Bukhansan National Park. The results were summarized as follows; In spring, the average pH of stream water was below the first class of the river water quality standard, while it was normal level in summer. The average electrical conductivity was about 2.3~3.3 times higher in downstream water than in upstream water during spring and summer. The contents of anions($Cl^-$, $NO{_3}^-$, $SO{_4}^{2-}$) were about 1.1~7.4 and 0.4~11.4 times higher in downstream than in upstream water, respectively. These results indicate that water quality was poorer in downstream than in upstream water. We suggest that stream water in the Mt. Bukhansan National Park should be protected from impacts of snow melting mineral particles in spring season and human impacts like wastewater of point source in summer season.

  • PDF

A development of an assessment system for stream physical environments in Korea (하천의 물리 환경 평가체계의 구축)

  • Jung, Hea-Reyn;Kim, Ki-Heung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.713-727
    • /
    • 2018
  • This study is to develop an assessment system for stream physical environments by considering stream characteristics. Comprehensively, the descriptions of and steam classification, assessing reach selection, contents of assessment categories and indexes are summarized. Since the physical structure of stream is results of reaction by stream power, streams were classified into three types (as high gradient stream, mid gradient stream and low gradient stream) according to the slope of channel, the grain size of bed material and the characteristics of channel topography. The scale of assessment reach was selected based on 10 or 25 times of channel width according to typical characteristics such as interval of step or riffle and sinuosity in each stream type. The assessment indexes were organized into common indicators such as channel stability, flow status, cross-section shape, bank stability, channel alteration and stream crossing structure, and characteristic indicators by stream type such as effective habitats, bed embeddedness, diversity of flow and frequency of step or riffle. To evaluate the applicability, the assessment system was applied to 9 streams and the results were analyzed and presented.

Assessing the Habitat Potential of Eurasian Otter (Lutra lutra) in Cheonggye Stream Utilizing the Habitat Suitability Index (서식지 적합성 지수를 이용한 청계천 수달의 서식지 평가)

  • In-Yoo Kim;Kwang-Hun Choi;Dong-Wook W. Ko
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.2
    • /
    • pp.140-150
    • /
    • 2023
  • The Eurasian otter (Lutra lutra) is an apex predator of the riparian ecosystem. It is a keystone and an indicator species; consequently, its presence suggests a sustainable water environment. Otter is a keystone species as a predator at the top of the food web in the aquatic environment and an indicator species representing the health of the aquatic environment. Although Eurasian otters disappeared from the Han River urban water system because of anthropogenic activities like habitat destruction, poaching, and environmental pollution in the 1980s, the species were sighted in the Cheonggye Stream, Jungrang Stream, and Seongnae Stream, which are urban sections of the Han River, in 2016 and 2021. Therefore, it is pertinent to assess the habitat potential in the area for conservation and management measures to ensure its permanent presence. However, existing studies on otter habitats focused on natural rivers and reservoirs, and there is a limit to applying them to habitats artificially confined habitats in narrow spaces such as tributaries in urban areas of the Han River. This study selected the Cheonggye Stream, an artificially restored urban stream, to evaluate its potential as a habitat for Eurasian otters in urban water environments using the habitat suitability index (HSI). The HSI was calculated with selected environment attributes, such as the cover, food, and threat, that best describe the L. lutra habitat. According to the results, the confluence area of Seongbuk Stream and Cheonggye Stream and the confluence area of Cheonggye Stream and Jungnang Stream were suitable otter habitats, requiring appropriate conservation efforts. The HSI model suggests a valuable method to assess the habitat quality of Eurasian otters in urban water environments. The study is crucial as it can help rehabilitate the species' populations by identifying and managing potential Eurasian otter habitats in highly urbanized areas of the Han River basin and its tributaries.

Analysis of Influence on Stream Water Quality by Soil Erosion Control Structures (사방공작물이 계류수질에 미치는 영향 분석)

  • Park, Jae-Hyeon;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.571-577
    • /
    • 2013
  • This study was carried out to establish the construction guidelines of soil erosion control structures for a restoration of mountain stream with analysis of water quality around constructed soil erosion control structures in mountain streams. Water pH of the Uidong valleys in Bukhansan (Mt.) was similar between the constructed soil erosion control structures of lower stream areas [pH 6.53(6.25~6.82)] and the non-constructed areas of upper stream areas [pH 6.32(5.73~6.90)]. Mean concentration of dissolved oxygen was also similar between the constructed soil erosion control structures of lower steam areas [10.2 mg/L(9.9~10.4 mg/L)] and the non-constructed areas of upper stream areas [10.3 mg/L (9.6~10.6 mg/L)]. Mean electric conductivity was similar between the lower [$63.9{\mu}S/cm$ ($32.6{\sim}120.4{\mu}S/cm$)]a nd the upper stream areas [$62.2{\mu}S/cm$ ($40.3{\sim}89.5{\mu}S/cm$)]. Mean concentration of anions was also similar between the lower [15.94 mg/L (3.43~7.98 mg/L)] and the upper stream areas [14.51 mg/L (2.56~4.29 mg/L)]. Water pH of the Honggei valleys in Sancheong-gun was similar between the lower [pH 6.86(6.50~7.10)] and the upper stream areas [pH 6.89(6.61~7.12)]. Mean concentration of dissolved oxygen was also similar between the lower [11.9 mg/L(11.5~12.3 mg/L)] and the upper stream areas [12.2 mg/L (11.6~12.6 mg/L)]. Mean electric conductivity was similar between the lower [$633.4{\mu}S/cm$ ($31.6{\sim}34.6{\mu}S/cm$)] and the upper stream areas [$32.7{\mu}S/cm$ ($31.4{\sim}34.3{\mu}S/cm$)]. Mean concentration of anion was also similar to both stream areas [1.0 mg/L (0.1~2.2 mg/L)]. Water quality in the Uidong and the Honggei valleys was not significantly different between the constructed soil erosion control structures of lower stream areas and the non-constructed areas of upper stream areas. It will be needed to study the time-series analysis of water quality before and after the construction of soil erosion control structure the restoration of mountain streams because the water quality in mountain streams could be affected during the construction processes of structures.

A Study on Effects of Rainfall on Contamination at Stream Around the Developed Quarry (강우가 석산개발 지역 주변 하천의 오염에 미치는 영향에 관한 연구)

  • Lee, Yang-Kyu;Han, Jung-Geun;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • This paper describes the influence of rainfall on contamination at stream around the developed quarry. The investigation results are analyzed to evaluate the relationship rainfall and heavy metals (or water pollution). In the relationship rainfall and heavy metals, the result showed that the heavy metal contaminations are caused by boulder stone, waste residue and stone sludge, which is reacted with the direct contamination source, in the burried layer. It also found that the water flow change of stream according to the rainfall increase affected the large effect to a contamination level of heavy metal. the water pollution was increased by time changed from the rainy season to the dry season. That is, a lot of suspended solids had been discharge from the developed quarry due to rainfall increase, and then pollution level of water increases as the undercurrent of suspended solids is generated in stream due to rainfall decrease. Therefore, it analyzed that continuous causes of heavy metal contamination and water pollution in stream are materials in the burried layer and a discharge of pollution source from the developed quarry due to rainfall.

SIMULATION OF REGIONAL DAILY FLOW AT UNGAGED SITES USING INTEGRATED GIS-SPATIAL INTERPOLATION (GIS-SI) TECHNIQUE

  • Lee, Ju-Young;Krishinamursh, Ganeshi
    • Water Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.39-48
    • /
    • 2005
  • The Brazos River is one of the longest rivers contained entirely in the state of Texas, flowing over 700 miles from northwest Texas to the Gulf of Mexico. Today, the Brazos River Authority and Texas Commission on Environmental Quality interest in drought protection plan, waterpower project, and allowing the appropriation of water system-wide and water right within the Brazos River Basin to meet water needs of customers like farmers and local civilians in the future. Especially, this purpose of this paper primarily intended to provide the data for the engineering guidelines and make easily geological mapping tool. In the Brazos River basin, many stream-flow gage station sites are not working, and they can not provide stream-flow data sets enough for development of the Probable Maximum Flood (PMF) for use in the evaluation of proposed and existing dams and other impounding structures. Integrated GIS-Spatial Interpolation (GIS-SI) tool are composed of two parts; (1) extended GIS technique (new making interface for hydrological regionalization parameters plus classical GIS mapping skills), (2) Spatial Interpolation technique using weighting factors from kriging method. They are obtained from the relationship among location and elevation of geological watershed and existing stream-flow datasets. GIS-SI technique is easily used to compute parameters which get drainage areas, mean daily/monthly/annual precipitation, and weighted values. Also, they are independent variables of multiple linear regressions for simulation at un gaged stream-flow sites. In this study, GIS-SI technique is applied to the Brazos river basin in Texas. By assuming the ungaged flow at the sites of Palo Pinto, Bryan and Needville, the simulated daily/monthly/annual time series are compared with observed time series. The simulated daily/monthly/annual time series are highly correlated with and well fitted to the observed times series.

  • PDF

Evaluation of the Effect of the Discharged Water from Bong Stream after Rainfall Events on the Bacteriological Water Quality in Gangjinman, Korea (강우 발생에 따른 남해군 봉천 방출수가 강진만 해역의 세균학적 수질에 미치는 영향 평가)

  • Park, Kun-Ba-Wui;Jo, Mi-Ra;Lee, Hee-Jung;Kwon, Ji-Young;Son, Kwang-Tae;Lee, Tae-Seek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.622-629
    • /
    • 2011
  • We investigated the effect of the discharged water from Bong Stream, which is located in the drainage area of Gangjinman area on the bacteriological water quality in the coastal area after rainfall events. Following 12.5 mm of rainfall, water discharged from Bong Stream had a very limited effect on bacteriological water quality in adjacent area and the affected area did not extend to the designated area. On the other hand, after 23 mm rainfall, the density of fecal coliform at stations located in the designated area was higher than at stations located in the adjacent area. The degree of bacteriological contamination at the surveyed stations in the coastal area after rainfall events did not show a relationship with distance from the shoreline. These results indicate that the direction of spread and the range of contaminants from the drainage area were affected by tides at the time of the survey. Therefore, a detailed survey of the effects of tides on the diffusion characteristics of the contaminants from Bong Stream is needed to establish a proper management plan for the surveyed area.

An Assessment on Efficiency of MBAS Removal in Urban Stream Maintenance Water by Using Sand Filtration (모래여과를 이용한 도시하천유지용수의 MBAS 제거 효율 평가)

  • Kim, hong bae;Ahn, kyung soo
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • Biological enhanced treatment and send filtration are established being operated to remove nutrients and MBAS(Methylene Blue Activate Substance) in the most of Waste Water Treatment Plant(WWTP) in Korea. However, untreated synthetic detergents and nutrients which directly run into the water system present an unpleasant view because of the foam, taste and odor generating filamentous periphytic algae and interrupting self-purification in the stream. Therefore, this research was enforced to know the MBAS removal efficiency of the sand filtration about G WWTP which reuses effluent as urban stream management water. As a result, the maximum removal efficiency using sand filtration was 63% after 24 hours and particularly 30% after 2 or 4 hours which turned out to be not that effective. In conclusion, It is recognized that other methods of MBAS removal and a research will be needed which reuse effluent as urban stream management water from now on. Because the MBAS removal with sand filtration is insufficient with economical efficiency from the fact that it needs long hours for a sand filtration treatment and the removal efficiency was almost below the expectation.

  • PDF

Changes in temporal and spatial stream water concentrations and analysis on nonpoint source runoff in forested watersheds on non rainfall days (산림소유역 유출수의 비강우일 비점오염물질 농도 변화 및 유출 특성 분석)

  • Yoo, Hyeon-Ju;Choi, Hyung-Tae;Kim, Jae-Hoon;Lim, Hong-Geun;Yang, Hyun-Je
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.137-149
    • /
    • 2020
  • This study was carried out to analyze the monthly runoff concentration on non rainfall days in order to prepare basic data to compare the runoff concentration on rainfall days in 7 forest watersheds in the Republic of Korea. Forest stream water has been collected through 15 times of sampling in each watershed and analyzed based on the changes in concentration of Biochemical Oxygen Demand(BOD), Chemical Oxygen Demand(COD), Total Organic Carbon(TOC), Total Nitrogen(TN), and Total Phosphorus(TP). The average concentration was 0.8 mg/L for BOD, 1.4 mg/L for COD, 0.8 mg/L for TOC, 1.85 mg/L for TN and 0.002 mg/L for TP during non rainfall days. Coniferous forested watersheds showed higher value of TN and TP concentration. Concentrations of BOD and TP in early March (p<0.01) were affected by melt water flow input in spring season. Significant differences (p<0.01) in concentrations were observed in BOD and TOC, indicating seasonal rainfall and vegetation growth impacts on forest stream quality. Concentration of TN and TP showed significant positive correlation, and weak negative correlation was found in the concentration of BOD and TOC. It is expected that result of forest stream water on non rainfall days could be basic information in managing non-point source from forest watersheds.