• Title/Summary/Keyword: Stream-edge

Search Result 129, Processing Time 0.02 seconds

Effects of Free-Stream Turbulence Intensity and Blowing Ratio on Film Cooling of Turbine Blade Leading Edge (자유유동 난류강도와 분사비가 터빈 블레이드 선단 막냉각 특성에 미치는 영향)

  • Kim, S.M.;Kim, Youn-J.;Cho, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.746-751
    • /
    • 2001
  • We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was $7.1\times10^4$. Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio.

  • PDF

Distribution of Stream-Edge Vegetation in the Balan Stream as Related to Soil Environjments (발안천에서 토양 환경에 따른 하천 주변의 식생분포)

  • 백명수;임경수;이도원;조도순
    • The Korean Journal of Ecology
    • /
    • v.20 no.6
    • /
    • pp.451-459
    • /
    • 1997
  • Seasonal and spatial distribution of vascular plants were examined and related to soil texture, pH, moisture and nutrient contents in the riparian zone of the Balan Stream. In spring the area was dominated by Alopecurus aequalis var. amurensis, was displaced by Persicaria thunbergii and Humulus japonicus in summer. From the stream channel to bank, soil texture and pH were not significantly differentiated, moisture decreased, organic matter and K increased, and TKN and available P increased in June and decreased in August. DCA ordination analysis by species distribution showed spatially and seasonally distinct patterns seasonal difference was evident on axis 1, and spatial difference according to the distance from stream channel was clear, too. Both axis 1 and axis 2 scores were significantly correlated with biomass, pH, and phosphate. Species richness increased were significantly correlated with biomass, pH, and phosphate. Species richness increaed with increasing organic matter and phosphate, and decreased with increasing soil moisture and K. Biomass increased with increasing organic matter, but was negatively related to pH, moisture, TKN, available P and K. Available P was significantly correlated with biomass, pH, and total soil nitrogen. In conclusion, the distribution of riparian vegetation was governed by soil physico-chemical properties, which are primarily determined by how far it is from the stream channel.

  • PDF

Effect of Free-Stream Turbulence on Film-Cooling Upstream of Injection Hole on a Cylindrical Surface (자유유동 난류강도가 원형 곡면위의 분사홀 상류에서의 막냉각에 미치는 영향에 대한 연구)

  • Seo, Hyeong-Joon;Kuk, Keon;Lee, Joon-Sik;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.645-652
    • /
    • 1994
  • The leading edge of a turbine blade was simulated as a circular cylindrical surface. The effect of free-stream turbulence on the mass transfer upstream of the injectionhole has been investigated experimentally. The effects of injection location, blowing ratio on the Sherwood number distribution were examined as well. The mass transfer coefficients were measured by a naphthalene sublimation technique. The free-stream Reynolds number based on the cylinder diameter is 53,000. Other conditions investigated are: free-stream turbulence intensities of 3.9% and 8.0%, injection locations of $40^{\circ}$, $50^{\circ}$, and $60^{\circ}$ from the front stagnation point of the cylinder, and blowing ratios of 0.5 and 1.0. The role of the horseshoe vortex formed upstream edge of the injected jet is dicussed in detail. When the blowing ratio is unity, and the coolant jet is injected at $40^{\circ}$, the mass transfer upstream of the jet is not affected by the coolant jet at all. On the other hand, when the injection hole is located beyond $50^{\circ}$, the mass transfer upstream edge of the injection hole suddenly increases due to the formation of the horseshoe vortex, but it dereases as the free-stream turbulence intensity increases because the strength of the horseshoe vortex structure becomes weakened. The role of the horseshoe vortex is clearly evidenced by placing a rigid rod at the injection hole instead of issuing the jet. In the case of the rigid rod, the spanwise Sherwood number upstream of the injection hole is much larger due to the intense influence of the horseshoe vortex.

STREAM PATTERN GENERATION USING PDE BY CONSIDERING VISCOSITY

  • Shimokubo, Yoshiaki;Zhang, Xiaohua
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.529-534
    • /
    • 2009
  • This paper reports a non-photorealistic rendering method for creating stream pattern from an input image. Our method extracts potential stream pattern in the given image. The proposed approach uses a shock filter based on a partial difference equation(PDE) which is implemented by applying a selective dilation and erosion processes. However, unlike the traditional first order solution to the PDE, we employ a second order scheme and compensate for the undesired diffusive effects caused by a viscosity form. The selection of dilation or erosion for a pixel is based on an edge detector computed from a structure tensor. By adding noises on to the input image, our method also can generate stream pattern even if there is less texture in some area. The experimental results show that the stream pattern is extracted very well.

  • PDF

Estimating the Air Temperature Cooling Effect of the Cheonggyechun Stream Restoration Project of Seoul, Korea

  • Park Chong-Hwa;Kwon Young-Sang
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.2
    • /
    • pp.120-129
    • /
    • 2004
  • Urban stream restoration projects can improve water quality, wildlife habitats, urban landscape, outdoor recreation spaces, and urban microclimate. The objectives of this research were to investigate temperature cooling effect of urban streams by using satellite imagery, to evaluate environmental variables related to stream cooling effect, and to estimate the cooling effect of the Cheonggye stream restoration project of Seoul, Korea. Findings of this research can be summarized as follows. First, a method of estimating temperature distribution around urban streams by using satellite imagery was developed. Scatter plots of distance from stream edges and average temperature obtained through multiple buffering were used for the estimation. Second, urban temperature cooling effect of streams was estimated by comparing background temperature and temperature of each buffer zone. Third, environmental factors affecting stream cooling effect were also identified. Fourth, the temperature cooling effect of the restoration project was estimated based on three scenarios. An estimated cooling effect based on the average cooling effect of existing tributaries showed the most significant effect; $2.0^{\circ}C$ lower than the present level at the edge of the renovated stream. It was estimated that the temperature of the same area would be $1.4^{\circ}C$ cooler than the present level if the cooling effect of the Yangjaechun was used as the bench mark But the effect would be $1.2^{\circ}C$ lower than the present level if environmental variables related to the temperature cooling effect of urban streams were used as the bench mark.

  • PDF

Vortical Flows over a Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.1042-1051
    • /
    • 2004
  • The vortex flow characteristics of a sharp-edged delta wing at high angles of attack were studied using a computational technique. Three dimensional, compressible Reynolds-averaged Navier-Stokes equations were solved to understand the effects of the angle of yaw, angle of attack, and free stream velocity on the development and interaction of vortices and the relationship between suction pressure distributions and vortex flow characteristics. The present computations gave qualitatively reasonable predictions of vortical flows over a delta wing, compared with past wind tunnel measurements. With an increase in the angle of yaw, the symmetry of the pair of leading edge vortices was broken and the vortex strength was decreased on both windward and leeward sides. An increase in the free stream velocity resulted in stronger leading edge vortices with an outboard movement.

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

The Establishment of Ecological Landscape Conservation and Restoration Sections for Urban Stream - Case studies of Jeonjucheon and Samcheon in Jeonju-si - (도시하천의 생태경관 보전 및 복원구역 설정에 관한 연구 - 전주시 전주천과 삼천을 중심으로 -)

  • Lim, Hyun-Jeong;Lee, Myung-Woo;Jeong, Moon-Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.2
    • /
    • pp.73-92
    • /
    • 2019
  • The purpose of this study is to establish the conservation and restoration areas for sustainable stream management by reflecting the ecological health, cultural characteristics, and the citizens' needs for stream uses. Therefore, we extended spatial ranges of stream evaluation to riparian areas in addition to stream sections. The evaluation indexes are stream naturalness, availability, biota assessment, and riparian characteristics such as land uses and legally protected areas. The grading system was unified with five classes. The spatial evaluation units for stream section are classified as right and left for laterally and 500m for longitudinally. For riparian areas, 30m and 100m of distance from the edge of stream are applied as spatial evaluation units. The six types of stream sections for management are conservation sections(priority/general) and restoration sections(priority/general) for ecological landscape and core and general sections for cultural landscape. The established system for evaluation and designating areas for stream management was applied to Jeonjucheon and Samcheon in Jeonju-si, and the conservation and restoration areas were designated reflecting the characteristics of urban and non-urban areas and left and right of stream sections. The results of this study will provide detailed guidelines for designating stream sections and practical management strategies for sustainable urban stream management.

Vegatation seres on the pebble area at ye-bang stream bank of north han river in korea (北漢江 上流 桂芳川 砂礫地 河岸植生의 遷移系列)

  • Kim, Jong-Geun;Yang-Jai Yim
    • The Korean Journal of Ecology
    • /
    • v.14 no.2
    • /
    • pp.195-210
    • /
    • 1991
  • The primary succession of the pebble area in gye-bang chon, an upper stream bank of north han river, was investigated by belt transect method from July to October 1990. The stsges of bare area, herbaceous pioneer, perenial herb, woody plants and pine stand were recognized from stream bank to inland. The change of the coverage in herbaceous plants increased with developing sueccessional sere but decreaser with increment of woody plants. The species sequence cyrves vs. relative coverage were geometric in pioneer stage and graduaiiy changed to lognormal y\type as the development of forest. The species diversity was highest during then woody plants stage, probably it would to be the edge effect. The soil properties were not noticeable difference between stream side and inland side. It seems that the vegetational developement was not enough to affect soil accumulation.

  • PDF

Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Jeong-Soo;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF