• Title/Summary/Keyword: Stream watershed

Search Result 854, Processing Time 0.027 seconds

Assessment of stream water quality and pollutant discharge loads affected by recycled irrigation in an agricultural watershed using HSPF and a multi-reservoir model (HSPF와 다중 저류지 모형을 이용한 농업지역 순환관개에 의한 하천 수질 및 배출부하 영향 분석)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The recycled irrigation is a type of irrigation that uses downstream water to fulfill irrigation demand in the upstream agricultural areas; the used irrigation water returns back to the downstream. The recycled irrigation is advantageous for securing irrigation water for plant growth, but the returned water typically contains high levels of nutrients due to excess nutrients inputs during the agricultural activities, potentially deteriorating stream water quality. Therefore, quantitative assessment on the effect of the recycled irrigation on the stream water quality is required to establish strategies for effective irrigation water supply and water quality management. For this purpose, a watershed model is generally used; however no functions to simulate the effects of the recycled irrigation are provided in the existing watershed models. In this study, we used multi-reservoir model coupled with the Hydrological Simulation Program-Fortran (HSPF) to estimate the effect of the recycled irrigation on the stream water quality. The study area was the Gwangok stream watershed, a subwatershed of Gyeseong stream watershed in Changnyeong county, Gyeongsangnam-do. The HSPF model was built, calibrated, and used to produce time series data of flow and water quality, which were used as hypothetical observation data to calibrate the multi-reservoir model. The calibrated multi-reservoir model was used for simulating the recycled irrigation. In the multi-reservoir model, the Gwangok watershed consisted of two subsystems, irrigation and the Gwangok stream, and the reactions (plant uptake, adsorption, desorption, and decay) within each subsystem, and fluxes of water and materials between the subsystems, were modeled. Using the developed model, three scenarios with different combinations of the operating conditions of the recycled irrigation were evaluated for their effects on the stream water quality.

A Study on the Estimation of Pollutant Runoff using GIS data and Application to the Closed Watershed (GIS 데이터를 이용한 오염 유출량의 해석과 폐쇄성 수역의 적용에 관한 연구)

  • 강상혁;김승호;권재혁;노구정인
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.263-273
    • /
    • 2002
  • This paper presents desirable water environmental management to a closed watershed. In order to obtain spatially distributed environmental information, GIS data have been used. Elevation data are used to extract stream channels automatically and to divide networks of a watershed. A Digital Elevation Model (DEM) has been developed, validated, and adopted to estimate the runoff of total nitrogen pollutant from watershed. This GIS-linked model can be applied effectively to the watersheds with many sub-streams, and for the estimation of pollutant runoff considering land use change.

  • PDF

Enhancement of Water Purification Functions of Watershed Basin (II) -­With a Special Reference to the Point at Issue and Counterplans­- (수변구역 산림의 수질정화기능 증진 (II) -­문제점과 대책을 중심으로­-)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.58-65
    • /
    • 2002
  • This study synthesizes previous research accomplishments with analysis of problems and counterplan for the riparian forest zone management and ongoing research strategy is suggested. If a part of budgets for water use allotments is supported for forest watershed owner, this policy for the forest owner could encourage the forest management of watershed. Integrated riparian forest management guideline in city and county needs to be established for the implementation of government guidelines. Base on the guideline, working plans of city and county could be evaluated. Public Forest Tending Work for stream water quality and quantity conservation should be enlarged for forest watershed and forest area management in five big river watersheds. Forest watershed should be managed with a connected system for a pollutant reduction strategy in urban and industrial areas.

Modeling of sediment and nutrients loadings from the Soyang Dam upstream watershed with SWAT (SWAT 모형을 이용한 소양강댐 유역의 비점오염 모델링)

  • Kim, Chul-Gyum;Kim, Nam-Won;Lee, Jeong-Eun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.288-293
    • /
    • 2005
  • In this study, SWAT model was applied to the Soyang Dam upstream watershed in order to evaluate the model applicability for estimating runoff, sediment, and nutrients loadings from the watershed. By trial and error method, the model parameters related with runoff, sediment, nitrogen and phosphorus were calibrated step by step. Then the simulated runoff, sediment, and nutrients loadings by the model were compared with the observed data measured at the Soyang Dam, the outlet of the watershed. And several statistical criteria were calculated to evaluate the model performance. From the comparison and statistical criteria, good agreement between simulated and observed stream flows was found. For sediment and nutrients, it was not reliable to quantitatively model the observed values, but the model could simulate the trend with reasonable accuracy. Hence, it was concluded that the model can be applied for the long-term non-point modeling in a large watershed.

  • PDF

Estimation on the Water Quality of the Ian Stream, a Tributary of the Nakdong River (낙동강 지류 이안천의 수질 평가)

  • Choi Kwangsoon;Lee Hyekeun;Kim Hojoon;Kim Saewon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1239-1243
    • /
    • 2005
  • The water quality of the Ian Stream, a tributary of the Na14dong River, was estimated to provide an information in establishment of an ecological restoration plan for fan dam which will be constructed in near future. Seven stations were selected in upstream (3 stations) and downstream (4 stations) of Ian Stream, centering the construction site of Ian dam. Samples were collected at the surface water of 7 stations selected on May 1, June 16, and September 1 in 2004. The values of DO, pH, and BOD are satisfied Grade I for river water standard in nearly all sites. The concentrations of total nitrogen (TN) and total Phosphorus (TP) showed low level with ranges of $1.10\~2.25\;mgN/L,\;5\~14\;{\mu}gP/L$. However, the total and fecal conform bacteria were detected in nearly stations, especially high at the upstream stations. The number of fecal conform bacteria corresponds to the Grade III for river water standard. In addition, some metals (iron, manganese) were detected during dry season. As a consequence, general water quality of Ian Stream satisfied Grade I for river standard and it is expected that pollution loads from watershed is not significant. However, the detection of fecal conform, which is thought to be from livestock and residents, and some metals originating mimes watershed can have a potential health risk exists for aquatic organisms lived in Ian Stream. It needs to be solved by the construction of wastewater treatment plant to diminish the health risk from stream water polluted by fecal conform and metals, and to provide the safe ecological habitat for aquatic organisms.

  • PDF

A Study on Basin Characteristics of Small Stream System (소하천 수계의 유역특성에 관한 연구)

  • An, Sang-Jin;Yun, Yeong-Nam;Gang, Gwan-Won
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.71-77
    • /
    • 1977
  • The stream morphological characteristics of a watershed play a significant role in the analysis of rainfall-runoff relations in a river basin and a quantitative description of these characteristics is essential for determining the appropriate values of physical parameters of a watershed which usually are input data for rainfall-runoff simulation models. In this study the stream morphological characteristics of the Gab River basin, which is one of the three major tributaries of Geum River, was determined quantitatively by the Horton-Strahler's method. The result showed that the Gab River System was developed very closely to the patterns generally described by the laws of Horton. The basic relations concerning the morphological characteristics deriveed in this study are the relations of stream length, and average stream slope, the stream length-drainage area relation, relative height-relative drainage area relation, and the relation between the proportional stream order and drainage area. No correlation analysis was possible between the morphological parameters and the streamflow due to non-existence of the stage gauging stations on the Gab River System.

  • PDF

Spatial and Temporal Variations of Water Quality in an Urban Miho Stream and Some Influences of the Tributaries on the Water Quality (청주지역의 도심하천인 미호천에서 시공간적 수질변이 특성 및 유입지천의 영향)

  • Kim, Ji-Il;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.433-445
    • /
    • 2014
  • The objective of study was to analyze seasonal and inter-annual patterns of water chemistry of Miho Stream watershed during 2004 - 2007 along with some influences of tributaries and summer monsoon on the stream water quality. For the study, eight physico-chemical parameters such as nitrogen, phosphorus, BOD, COD and chlorophyll-a (CHL) etc. were analyzed in relation to spatial and temporal variability of seven sampling sites of the mainstream and some tributaries in the watershed. In the upstream reach, Mean of BOD, COD and TP averaged 3.2 mg/L, 6.5 mg/L and $186{\mu}g/L$, respectively, indicating an eutrophic conditions as a III-rank in the stream water quality criteria from the Ministry of Environment, Korea(MEK). The eutrophic water was due to a combined effect of Chiljang tributary with high nutrients ($TP=844{\mu}g/L$, TN=8.087 mg/L) and the point sources from some wastewater treatment plants. In the meantime, BOD, TN, and TP in the downstream reach were about > 1.2-1.5 folds than the values of the midstream reaches. This was mainly attributed to effluents of nutrient rich-water (mean TN: 11.980 mg/L) from two tributaries of Musim Stream and Suknam Stream, which is directly influenced by nearby wastewater disposal plants. Seasonal analysis of water chemistry showed that summer monsoon rainfall was one of the important factors influencing the water quality, and water quality had a large spatial heterogeneity during the rainfall period. In the premonsoon, BOD in the downstream averaged $6.0{\pm}2.47mg/L$, which was 1.4-fold greater than the mean of upstream reach. Mean of CHL-a as an indicator of primary productivity in the water body, was > 2.2 - 2.9 fold in the downstream than in the upstream, and this was a result of the high phosphorus loading from the watershed. Overall, our data suggest that some nutrient controls in point-source tributary streams are required for efficient water quality management of Miho Stream.

Estimation of Design Flood Runoff in Ungaged Forest Watershed to Reduce Flood Damage within the National Park (국립공원내 홍수피해 저감을 위한 미계측 산림지역의 설계홍수량 추정)

  • Kim, Sang-Min;Im, Sang-Jun;Lee, Sang-Ho;Kim, Hyung-Ho;Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.107-113
    • /
    • 2009
  • The purpose of this study is to estimate the design flood runoff for ungaged forest watershed to reduce the flood damage in national park. Daewonsa watershed in Jirisan National Park was selected as study watershed, of which characteristic factors were obtained from GIS data. Flood runoff was simulated using SCS unit hydrograph module in HEC-HMS model. SCS Curve Number (CN) was calculated from forest type area weighted average method. Huff's time distribution of second-quartile storm of the Sancheong weather station, which is nearest from study watershed, was used for design flood runoff estimation. Critical storm duration for the study watershed was 3 hrs. Based on the critical duration, the peak runoff for each sub-watershed were simulated. It is recommended to monitor the long-term flow data for major stream stations in National Park for a better reliable peak runoff simulation results.

Development of Synthetic Unit Hydrograph for Estimation of Runoff in Ungauged Watershed (미계측 유역의 유출량 산정을 위한 합성단위도 개발)

  • Choi, Yong Joon;Kim, Joo Cheol;Jeong, Dong Kug
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.532-539
    • /
    • 2010
  • The synthetic unit hydrograph is developed and verified using Nash model and characteristic velocities considering geomorphological dispersion in this present study. Application watersheds are selected 5 subwatersheds of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. Characteristic velocities are calculated using estimated path lengths and moment characteristics of rainfall-runoff data. Characteristic velocities of random devised 7 ungauged watersheds are estimated through regional analysis of chracteristic velocities in guaged watershed. And Nash model parameters and IUH are derived using characteristic velocities and path length in the gauged and ungauged watershed. The result to compare of IUH about gauged watershed and random devised ungauged watershed in application watershed presents coherently hydrologic response characteristics that peak discharge is reduced and peak time is extended. In conclusion, Developed synthetic unit hydrograph in this study expects that it is useful method to estimate runoff discharge for managing of water pollution in ungauged watershed.

Impact of Urbanization on Hydrology of Geumho River Watershed: A Model Study (금호강 유역의 수문환경에 대한 도시화의 영향: 모형 연구)

  • Kim, Jae-Chul;Lee, Jiho;Yoo, Chulsang;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • The Geumho river watershed located in the middle of the Nakdong river has been threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of ecological habitats in Geumho river. Anticipated increase in imperviousness, on the other hand, is expected to elevate flood risk and the associated environmental damage. A watershed hydrology based modeling study is initiated in this study to assist in planning for sustainable future development in the Geumho river watershed. The Soil and Water Assessment Tool (SWAT) is selected to model the impact of urbanization in the Geumho river watershed on the hydrologic response thereof. The modeling results show that in general the likelihood that the watershed will experience high and low stream flows will increase in view of the urbanization so far achieved.