• Title/Summary/Keyword: Stream morphology

Search Result 62, Processing Time 0.029 seconds

Gnaphalium tranzschelii Kirp. (Asteraceae): An unrecorded species from Korea

  • Lee, Dong Hyuk;Byeon, Jun Gi;Heo, Tae Im;Park, Byeong Joo;Lee, Jun Woo;Kim, Ji Dong;Choi, Byoung Hee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.78-78
    • /
    • 2019
  • Gnaphalium L. is a small herbaceous genus comprising up to 80 species in worldwide (Asia, North to South America, Africa, and Oceania). This genus is highly polymorphic which embrace uncommon broad morphological boundary, and thus further studies were needed to proper taxonomic delimitations for the genus and its relatives. Gnaphalium uliginosum L. was usually found in moist sites such as margins of lake, pond, reservoir, stream banks and paddy field. This squat plant is solely known species in Korean Gnaphalium. During the revisionary study of the tribe Gnaphalieae (Asteraceae) in Korea, however, we found several materials in domestic herbaria (e.g., SNU, KWNU) that identified as G. uliginosum or Gamochaeta pensylvanica (Willd.) Cabrera collected from central to northern Korea, but clearly differ to the morphology of G. uliginosum. The external morphology of the materials is seemingly the only feature at odds with G. uliginosum. However, its morphological characters such as tall erected stems (ca. 30cm), hairs on seeds and whitish tomentose hairs on the whole plants are easily distinguished from G. uliginosum, and rather it looks like G. tranzschelii Kirp. Although the name G. tranzschelii have been treated as synonym of G. uliginosum by several authors, its distinct morphology might be sufficient to separate to two independent taxa. Generally, the morphological polymorphisms and hybridization of G. uliginosum complicate the taxonomy of the species, and thus further investigation for their habitat, distribution and morphology were needed to their taxonomic entity.

  • PDF

Morphology of Retinas and Lenses in the Fish of the Genus Zacco (Cypriniformes, Cyprinidae): Possible Relationship with Prey and Habitat

  • Lim, Jae-Won;Lee, Chung-Lyul;Lee, Moo-Sam
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.331-335
    • /
    • 2003
  • Vertebrates with different habitats have different proportions of visual cells, with the rod cells responding to scotopic vision and the cone cells responding to photopic and color vision in their retinas. The present work studied whether the kinds and arrangement patterns of the cone cells and interlocking morphology of the lens were related to the kind of preys and habitats in the genus Zacco. The retinas were observed by a light microscopy using H-E staining method and the interlocking formula of the lens fibers were investigated by a scanning electron microscopy. The interlocking formula of the lens fibers of Z. temmincki is an ' anchor and socket ' connection, and that of Z. platypus is a ' ball and socket ' connection. The cone cells of Z. platypus and Z. temmincki constituted compacted mosaic patterns of row type. Away from the center, the double and single cone cells gradually increased in diameter. Zacco temmincki had identical double cone cells and Z. platypus had non-identical double and single cone cells. The eyes of Z. temminckifeeding on a moving aquatic insects in relative limpid water and swift current of mid and upper stream have better resolution than that of Z. platypus feeding on mainly adhesive algae and some aquatic insects in slightly turbid water of mid stream.

Comparisons of Flora and Vegetation Distribution in Main and Abandoned Channels (본류와 폐천의 식물상과 식생분포의 비교)

  • Cho, Hyung-Jin;Hong, Il;Yeo, Hong-Koo;Cho, Kang-Hyun
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 2009
  • We investigated characteristics of channel morphology, flora and vegetation distribution at the main and the abandoned channels of the Hwangguji Stream and the Cheongmi Stream. The analysis of aerial photographs and old topographical maps showed that the abandoned channels were made by cut-off from the main channel due to the construction of artificial levee. The total number of species and percentage of exotic plants at the main channels were higher than those at the abandoned channels. At the abandoned channel, the percentage of species number of hydrophytes and hygrophytes was higher than those at the main channels in the both stream. The results of principal component analysis (PCA) showed that the floral structure between at the main and the abandoned channel was more similar in the Hwangguji Stream than that in the Cheongmi Stream. The relative distribution areas of hydrophytes and hygrophytes at two abandoned channels were much higher than those at the main channels in the both stream. The dominant plant was an emergent macrophyte, Zizania latifolia at two abandoned channels. Therefore, flora and vegetation at the abandoned channel showed more hydric and lentic characteristics and provided diversity on the landscape level.

  • PDF

An Evaluation on Restoration Effect in the Restored Yangjae Stream and the Improvement Plan Based on the Result (복원된 양재천에서 복원 효과 평가 및 평가 결과에 기초한 개선방안)

  • Kim, A Reum;Kim, Dong Uk;Lim, Bong Soon;Seol, Jae Won;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.390-407
    • /
    • 2020
  • This study was carried out to evaluate the restoration effect in the restored Yangjae stream and to draw up an adaptive management plan based on the results. As the result of evaluation on the restoration effect, the restored Yangjae stream was evaluated with low naturalness in both terms of the morphology of the stream and the composition and spatial distribution of vegetation. The diverse functional groups were introduced in the vegetation restoration, but the flooding regime, which is significant in the spatial distribution of riparian vegetation, were not correctly reflected. Exotic species or species that were not ecologically suitable for the location were introduced on the embankment and thus a measure to improve those problems is required. As the ecological principle was not reflected in the restoration plan, the stream was constructed as the double terrace structure. Therefore, the width of the waterway was narrowed further, and the waterfront was not designed to accommodate changes from flooding disturbance, making the micro-topography of the stream simpler and the naturalness lower. The adaptive management plan was prepared to improve those problems, and a plan for creating an ecological network was recommended to enhance the restoration effect.

Numerical Simulations of Developing Mining Pit using Quasi-Steady Model (준정류모형을 이용한 하천의 준설 웅덩이 발달 모의)

  • Choi, Sung-Uk;Choi, Seongwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.53-57
    • /
    • 2012
  • This study presents a numerical model that is capable of simulating the evolution of mining pit in a stream. The numerical model is based on the quasi-steady assumption that the flow is steady with time-dependent morphological change. This hypothesis is valid due to the fact that the stream morphology changes over a long period compared with the time of flow change. Before applications, numerical experiments are carried out with two total load formulas such as Engelund and Hansen's (1967) and Ackers and White's (1973). It is found that the use of Engelund and Hansen's formula reproduces evolution of mining pit best compared with simulated profiles in Parker (2004). Then, the model is applied to two laboratory experiments in the literature. In general, the numerical model simulates properly the evolution of mining pit in laboratory open-channels. However, it is found that the model does not reproduce head-cutting, propagating upstream, and under-estimates the wave of the bed, propagating downstream, after finishing the re-fill of the mining pit.

Examination of the Algorithms for Removing Sink and Flat Area of DEM (DEM에서의 Sink와 Flat Area 처리 알고리즘에 대한 비교 검토)

  • Kim, Kyung-Tak;Choi, Yun-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.91-101
    • /
    • 2005
  • To determine stream network and watershed boundary using DEM, it is necessary to remove sink and flat area in proper way. There are filling algorithm and breaching algorithm to remove sink and Jenson and Domingue algorithm, relief algorithm and combined gradient algorithm to determine flow direction in flat area. In this study, the algorithms are reviewed. The computer program which uses filling algorithm with breaching algorithm and combined gradient algorithm to remove errors in DEM is developed. The results from this program are compared with Arc/Info which uses filling algorithm and Jenson and Domingue algorithm. The characteristics of stream network extracted from the DEM are analyzed. They are compared with the stream from NGIS map for stream morphology and characters by stream order to examine the value of this study.

  • PDF

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.

The Characteristics of Soot at the Post-Flame Region in Jet Diffusion Flames Added Carbon Dioxide (이산화탄소가 첨가된 제트확산화염 후류에서의 매연 특성)

  • Ji, Jung-Hoon;Lee, Eui-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.9-13
    • /
    • 2010
  • An experimental study for characteristics of soot were conducted at the post-flame region in jet diffusion flames, where carbon dioxide was used as additives in oxidizer stream. Light-extinction method was performed using He-Ne laser with wave length at 632.8nm for the measurement of relative soot density and soot volume fraction with dimensionless extinction coefficient, $K_e$ and mass specific extinction coefficient, ${\sigma}_s$. To increase of resolution, laser light was modified for sheet-form using concave, convex lenses and slit. C/H ratio was introduced for quantitative analysis of soot growth which is expressed by carbonization and dehydrogen. Also transmission electron microscopy(TEM) was used for observation of morphological shape. The results show that the relative soot density in the post-flame region was lower when carbon dioxide was added in oxidizer stream because of reduction of flame temperature.

Synthesis of Ceria Nanosphere by Ultrasonic Spray Pyrolysis

  • Kim, Jong-Young;Kim, Ung-Soo;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.249-252
    • /
    • 2009
  • Nanocrystalline ceria particles were prepared by using the ultrasonic spray pyrolysis method. The prepared ceria particles were found to be spherical and non-agglomerated by the SEM and TEM analyses. It was found that carrier gas influences the size and morphology. It was found that the air stream of carrier gas results in porous agglomerated structure of ceria abrasives, whereas solid nano-sphere can be obtained in a more oxidizing atmosphere.