• Title/Summary/Keyword: Stream flow

Search Result 2,014, Processing Time 0.023 seconds

Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters (지상인자에 의한 순간단위도 유도와 유출량 예측)

  • 천만복;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF

Characteristics of short term changes of groundwater level and stream flow rate during 2017 Pohang earthquakes (2017 포항 지진시 단기간 지하수위 변동 및 하천 유량 변화 특성)

  • Choi, Myoung-Rak;Lee, Ho-Jeong;Kim, Gyoo-Bum
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.557-566
    • /
    • 2018
  • Pohang earthquake (Main shock magnitude = 5.4) occurred in Southeastern region of South Korea in November 15, 2017. Groundwater levels of 6 monitoring wells with 5 minutes interval measurements located in that region and stream water levels of 4 stations located along the Hyeongsan-gang stream are used for the analysis of earthquake induced effects. Four groundwater monitoring wells show a short-term decrease of groundwater level after a main shock and one well does an increase and the maximum change is about 42.0 cm. Especially, groundwater levels at two monitoring wells near the epicenter are consistently maintained after a decrease. There is little relationship between earthquake magnitude or a distance to epicenter and changing amount of groundwater level and it may be due to the inhomogeneity of geologic material and unconsolidated sediments distribution. The changes in permeability of fractured zone and groundwater levels occasionally cause changes in stream flow rate, and water level of the Hyeongsan-gang stream in the study area decreases just after the earthquake and increases again up to the normal level and next shows an more gentle decreasing slope. Total increasing flow rates at S1 (upstream site) and S4 (downstream site) stations are about $12,096m^3$ and $116,640m^3$, respectively, during the increasing period.

The effect of free stream turbulence on the near wake behind a circualr cylinder (원주의 근접후류에 대한 자유흐름 난류강도의 영향)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2062-2072
    • /
    • 1991
  • The effect of free stream turbulence on the flow characteristics behind a circular cylinder is investigated in the present experimental study. The various free stream turbulent intensities are generated by different combinations of cylinder locations and grid shapes. Split film sensor with constant temperature anemometer is used to measure the local instantaneous velocity components. Experimental results demonstrate the large scale coherent structures are rapidly distorted and the Strouhal number is decreased with increasing free stream turbulent intensity.

Recent Ocean Tidal Stream Power Generation Technology (국내외 해양 조류발전 기술)

  • Jo, Chul-H.;Park, K.K.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.134-137
    • /
    • 2006
  • Tidal power can use conventional technology to extract energy from the tides. It is usually best deployed in areas where there i s a high tical range which includes Western and Southern coastal areas in Korea. However, to extract tical energy, a barrage across an estuary or a bay is to be constructed that is now very hard due to severe environmental impact on local estuary. The recent technology of application of tidal stream provides a new window to extract power minimizing the adverse environmental impact Tidal stream technology which directly exploits these currents is relatively new but is presently generating considerable interest Turbine rotors can be used to extract energy from the flows. Prototype devices currently on test in the UK include the 300kW SeaFlow turbine. In this paper, the recent technology and research on ocean tical stream power are addressed

  • PDF

The effect of Combined Sewer Overflows on river's water quality

  • Bae, Hun Kyun
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • The effect of Combined Sewer Overflow on the river system was investigated throughout three preliminary field tests and three main ones. As a result of the study, Combined Sewer Overflow did not affect water qualities on the main stream since the concentration of the main stream did not significantly changed during rainfall events although the water quality of tributaries has rapidly deteriorated due to the influence of the Combined Sewer Overflow during rainfall events. The main cause of the result is that the flow rate of the tributaries is considerably lower than that of the main stream, so that the tributaries with deteriorated water quality during rainfall events did not significantly affect the quality of the actual main stream. Therefore, the water quality of the Kumho River is more affected by the wastewater treatment facilities that discharges water continuously to the main stream than pollutants from non-point pollution sources during rainfall events. As a result, managements for discharges from wastewater treatment facilities should be strengthened in order to improve the water quality of the river.

A Study on the Reduction of Viscous Frictional Force with Uniform Pressure Distribution in the Turbulent Boundary Layer (균일(均一) 압력(壓力) 분포(分布)에 의(依)한 난류(亂流) 경계층내(境界層內) 결성(結性) 마찰력(摩擦力)의 감소화(減小化)에 관한 연구(硏究))

  • Sung, Du-Nam;Kim, Si-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.1
    • /
    • pp.40-48
    • /
    • 1997
  • In this study, uniform pressure distribution with small hole on the surface of symmetric object were given to reduce the viscous frictional force. The results were as follows : 1. The velocity on upper stream were accelerated by uniform pressure distribution on symmetric objects for reducing the viscous frictional resistances. 2. The effects of the distributed small holes were reduced the viscous frictional resistances in down stream region more than upper stream due to the increasing pressure in reverse flow region. 3. The viscous skin friction on surface of symmetric objects with and without distributed small holes are effect in region of upper stream and much decreased in down stream region due to increasing of boundary layer thickness.

  • PDF

Study of Supersonic, Dual, Coaxial, Swirl Jet (초음속 동축 스월제트의 유동특성에 대한 연구)

  • 김중배;이준희;이권희;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.15-18
    • /
    • 2003
  • The present study addresses an experimental investigations of the near field flow structures of supersonic, dual, coaxial, swirl jet. The swirl stream is discharged from the secondary annular nozzle and the primary inner nozzle provides the sonic and supersonic free jets. The interactions between the secondary swirl and inner soni $c^ersonic jets are quantified by a fine pilot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the secondary swirl and primary soni $c^ersonic jets are varied below 7.0. Experiments are conducted to investigate the effects of the secondary swirl stream on the primary sonic and supersonic jets, compared with the secondary stream of no swirl. The results show that the presence of annular swirl stream causes the Mach disk to move more downstream, with the increased diameter, and remarkably reduces the fluctuations of the impact pressures in the supersonic dual coaxial jet, compared with the case of the secondary annular stream of no swirl.swirl.

  • PDF

An Estimation of River bed Profile of the Stream System based on the Potential Energy Concept (位置에너지 槪念에 依한 水系의 河川縱斷 推定)

  • Ahn, Sang-Jin;Kang, Kwan-Won;Kim, Chang-Su
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.2
    • /
    • pp.76-88
    • /
    • 1982
  • The stream morphological characteristics of a basin have important influence upon the analysis of runoff. In this study, the laws of stream morphology-the law of average stream fall and the law of least rate of potential energy expenditure-which were derived based on the analogy of entropy in thermodynamics are introduced and their validity is analysised with the data taken from the topographic maps covering the whole Geum River system. The first law is the Law of Average Stream Fall which states that under the dynamic equilibrium condition the ratio of average fall between any two different order stream in the same river basin in unity. The second law is the law of least rate of energy expenditure which states that all natural streams are intended to choose their own course of flow such that the rate of potential energy loss per unit mass of water this course is a minimum. The parameters representing the morphological characteristics of 13 tributaries in the Geum River system such as stream bifurcation ratio and stream concavity were Computed from the Horton-Strahler's laws and are used to check the law of average stream fall. The result showed that the law of average stream fall agrees reasonably well with law of Horton-Strahler. Concavity of a river basin is shown to be the determinative factor to the formation of a stream system. Concavity of a river basin is shown to be the determinative factor to the formation of a stream system. Based on Horton's Law and the law of average stream fall, longitudinal stream profiles can be calculated.

  • PDF

Applicability of A Stream Evaluation Method for Stream Restoration (하천복원을 위한 하천평가기법의 적용성 연구)

  • Lee, Joon-Ho;Kang, Tae-Ho;Sung, Young-Du;Yoon, Sei-Eei
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.131-143
    • /
    • 2003
  • The purpose of this study was to develop a new method for evaluation of stream naturalness in order to promote stream managers' understanding on importance of improving stream naturalness, and in order to appraise and prescribe for streams effectively in the process of ecological restoration of stream corridors. In order to analyze the evaluation method of stream naturalness and its applicability to streams, stream naturalness index(SNI) which has seven factors such as channel development, longitudinal profile, lateral section, stream bed structure, low flow channel structure, stream surroundings and water quality was suggested in this paper. For case studies, Bokha stream was selected for the evaluation of stream naturalness. At the Bokha stream, the scores of SNI factors were in range of $2.2{\sim}3.8$, and the average of SNI was 3.1, and the most frequent grade of SNI factors was grade 3. Among the 7 factors, the best was lateral section, and the worst was channel development. In this study, SNI grade can represent the characteristics of stream naturalness well and select the streams which will be restored, and can also decide the segment and the method of restoration for deteriorated streams.

TURBULENT FLOW AROUND AN INCLINED SQUARE CYLINDER (기울어진 정방형 실린더를 지나는 난류 유동)

  • Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.52-58
    • /
    • 2009
  • Turbulent flow past an inclined square cylinder immersed in a cross stream is numerically investigated. The angle of incidence of main flow is one of the key factors determining at which edges the flow separates. In the present study, based on comprehensive numerical simulations, effects of inclination angle on the flow characteristics are elucidated and the related physical explanation is presented.