• Title/Summary/Keyword: Stream Restoration

Search Result 500, Processing Time 0.027 seconds

Regional Vulnerability Assessment of Invasive Alien Plants in Seoul and Gyeonggi Province (서울시 및 경기도의 생태계교란식물 취약지역 평가)

  • Park, Hyun-Chul;Lee, Gwan-Gyu;Lee, Jung-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.1-13
    • /
    • 2015
  • This study was conducted to develop an environmental index for assessing the vulnerability of areas with invasive alien plants. To that end, "Regional Vulnerability Numerical Index" (RVNI) was developed with a spatial statistical technique and applied to Seoul and Gyeonggi-do area first. The results are as follows. First, RVNI was high in stream areas. Second, RVNI was lowest in mountain areas. It indicates that stream areas are vulnerable to invasive alien plants. In terms of regions, Guri City is most vulnerable and Gapyeong-gun is the least vulnerable. To expand and manage the invasive alien plants, a control protocol should be developed by considering the physiology and ecology by invasive alien plant. Also, related policies should be pursued based on the results. Thus, the findings of this study can be used as baseline data for setting policies for invasive alien species management.

Control of Cyanobacteria and Phytoplankton Using Physico-chemical Methods (물리·화학적 방법을 이용한 Cyanobacteria와 식물 플랑크톤의 제어)

  • Jheong, Weon-Hwa;Jeon, Eun-Hyung;Ahn, Tea-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.75-84
    • /
    • 2004
  • Loess, PAC, MACF and plants were applied to the control of the phytoplankton bloom in laboratory and in field, In field experiment using oil fence, 5ppm concentration of coagulant(PAC) was observed to be effective in controlling the cyanobacterial bloom, resulting in 90% removal of cyanobacteria and phytoplankton from the water column, hi case of Synedra sp., however, only 50% of biomass decreased with the same PAC concentration. MACF(micro-air bubble coagulation and floating), a kind of physicochemical method, was applied to the column of the Kyongan stream and resulted in over 80% chlorophyll a and 73.5% TP removal, Chlorophyll a and total phosphorus were effectively removed from water body when 2.0 g/L of loess with the particle radius of 125 ${\mu}m$ was inputted. In case of experiments involving plants, big cone pine, gingko, and pine needle were observed to be effective in restraining phytoplankton bloom at 0.5g/200ml level. During a field test done at Kyungan stream, where Microcystis heavily occurred, Pine needle and big cone pine were observed to be effective on suppressing algal growth.

A Study on Application & Evaluation of Riverbed Techniques for the Formation of Hyporheic Zone (하상간극수역의 형성을 위한 하상공법의 적용과 평가)

  • Choi, Jungkwon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.6
    • /
    • pp.119-133
    • /
    • 2013
  • The purpose of this study is to develop riverbed techniques to activating ecological function of hyporheic zone. Hyporheic zone maybe simply defined as an active eco-tone between surface water and groundwater, which facilitates to exchange water, nutrients and aquatic habitat occur in response to variation in discharge and bed geomorphology. The aim of this study is to evaluate the effectiveness of an applied riverbed technique for two years since its installation in the hyporheic zone. The experimental riverbed technique has been implemented on Anyang stream penetrating Anyang city in Gyunggi province. The dimension of the installed structure is 5.0 m in width, 46 m in length. Bottom layer is filled with rip-rap covered with gabion. After the implementation of the technique, the study conducts follow-up monitoring in two years of between 2011 and 2012. The results of follow-up monitoring for two years are as follows:1) In Hydro geomorphic process, the riverbed technique maintains hydraulic stability despite of several flood events in 2011, 2012. 2) After transformation to form pool-and-riffle habitat, for aquatic community composed of freshwater fish, macro invertebrate, and attached algae, the species diversity and population gradually increased. 3) The riverbed technique achieved desired effect on enhancement of ecological function in hyporheic zone.

Vascular Plants Distributed in Namcheon Stream in Gyeongju City (경주시 남천에 분포하는 관속식물상)

  • You, Ju-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.2
    • /
    • pp.25-46
    • /
    • 2023
  • The purpose of this study was to present the ecologically important data for conservation and management of river ecosystem. Namcheon Stream, the study site, is a local river flowing from the east to the west of Gyeongju. The results are as follows. The numbers of vascular plants were summarized as 518 taxa including 98 families, 321 genera, 467 species, 9 subspecies, 32 varieties, 4 forms, 4 hybrids and 2 cultivars. The rare plants were 4 taxa including Aristolochia contorta, Koelreuteria paniculata, Hydrocharis dubia and Sparganium stoloniferum. The Korean endemic plants were Populus × tomentiglandulosa, Salix koriyanagi, Lespedeza maritima, Weigela subsessilis and Hemerocallis hakuunensis. The floristic target species were 27 taxa including 2 taxa of grade IV, 4 taxa of grade III, 7 taxa of grade II and 14 taxa of grade I. The invasive alien plants were 92 taxa including Pterocarya stenoptera, Conyza canadensis, Vulpia myuros and so on. The ecosystem disturbing species were 6 taxa including Rumex acetosella, Sicyos angulatus, Solanum carolinense, Ambrosia artemisiifolia, Lactuca seriola and Symphyotrichum pilosum.

The Application of ASTER TIR Satellite Imagery Data for Surface Temperature Change Analysis -A Case Study of Cheonggye Stream Restoration Project- (도시복원사업의 열 환경 변화 분석을 위한 ASTER 열적외 위성영상자료의 활용 -청계천 복원사업을 사례로-)

  • Jo, Myung-Hee;Jo, Yun-Won;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.73-80
    • /
    • 2009
  • Recently in order to mange better life quality much effort was spent for environmental-friendly urban development project and environmental restoration project. During these projects, there should be deep understanding about atmospheric environment change analysis and long term monitoring so that it would be helpful for better environment promotion such as heat island mitigation effect and wind way construction. In this study, the surface temperature environment change between before and after Cheonggye Stream Restoration Project was mapped and analyzed by using ASTER(Advanced Spaceborne Thermal Emission Reflection Radiometer) TIR(Thermal Infrared) satellite imagery and finally the fact, that the heat island effect was mitigated, was clarified. For this study, the correlation analysis was conducted through comparing the difference between atmosphere temperature of AWS(Automatic Weather System) and surface temperature of ASTER. Furthermore, this study will be the infrastructure of urban meteorology model development by understanding surface temperature pattern change and executing quantitative analysis of heat island.

  • PDF

Analysis on the Restoration of Visiting Roads of Stream of Chilsun in Jirisan National Park (지리산국립공원내 칠선계곡 탐방로의 회복에 관한 분석)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.105-113
    • /
    • 2010
  • To investigate the restoration procedure on soil physical properties at the surface of visiting road affected by rest-year system. This study was carried out at visiting roads of stream of Chilsun in Jirisan. Mean soil strength in 20cm of soil depth was lower in the Rest-Year System areas (1.5-1.9 times in Site 2, 1.1-7.5 times in Site 3) than in the control (Site 1). Soil strength was recovered by the Rest-Year System in the national park. Mesopore rate (pF 2.7) in 0-15 cm of soil depth was higher in the Rest-Year System areas (1.2 times) than in the control. This indicates that mesopore rate is rapidly restoring in the Rest-Year System areas. Pore space rate in 0-7.5 cm of soil depth was higher in the Rest-Year System areas (23.2% in Site 2, 23.6% in Site 3) than in the control (22.4% in Site 1). Pore space rate in 7.5-15 cm of soil depth was also higher in the Rest-Year System areas (22.9% in Site 2 and Site 3) than in the control (18.9% in Site 1). Soil pore space was remediable by the Rest-Year System. Bulk density in 0-7.5 cm of soil depth was lower in the Rest-Year System areas (1.674g/$cm^3$ in Site 2, 1.668g/$cm^3$ in Site 3) than in the control (1.723g/$cm^3$ in Site 1). Bulk density in 7.5-15 cm of soil depth was lower in the Rest-Year System areas (1.785g/$cm^3$ in Site 2 and 1.721g/$cm^3$ in Site 3) than in the control (1.721g/$cm^3$ in Site 1). Soil bulk density was decreased in the Rest-Year System areas of the national park. Amount of soil erosion was lower in the Rest-Year System areas ($0.017m^3$/km/yr in site 2, $0.023m^3$/km/yr in site 3) than in the control ($0.054m^3$/km/yr in site 1).

A Study on Development of Evaluation Method on Riverine Ecobelt (수변 생태벨트 평가방법 개발에 관한 연구)

  • Cho, Yong-Hyeon;Choi, Dae-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.1
    • /
    • pp.123-132
    • /
    • 2014
  • This study aims to develop the diagnostic evaluation method of the riverine ecobelt for construction, conservation, and maintenance of the riverine ecobelt. The value indices in the proposed evaluation method are composed of total 5 fields and 19 elements. The 5 fields are flood control, environmental function, growth of plants, ecobelt function, and restoration potential. Flood control field is composed of total 3 elements such as length, width, and density of green area. Environmental function field is composed of 4 elements such as park use, landscape boundary and edge, microclimate control, non-point pollution control. Growth of plants field is composed of 6 elements such as species composition, forest height, stratum structure, vine plants, plant vitality, and succession of plants. Ecobelt function field is composed of 4 elements such as longitudinal connectivity, lateral connectivity, in-stream forest or habitat, roads on bank top. Restoration potential field is composed of 2 elements such as landform and land use of the immediate vicinity. The score system ranging 1~4 was adopted. The weighting parameters of elements were unified with each other. The final grade system ranging 1~5(1: very good~5: very bad) was adopted, and the final grade was evaluated by the mean values of each field. According to the test application of the diagnostic evaluation method of the riverine ecobelt, the final grades showed effectively the real condition of each site.

The Study on Ecological Function Assessment at Streams in Rural Area - The Focus of Han-River Basin - (농촌지역 소하천의 생태환경 평가 연구 - 한강유역 지류를 중심으로 -)

  • Kang, Bang-Hun;Kim, Nam-Choon;Son, Jin-Kwan;Kim, Mi-Heui;Cho, Seung-Jin;Rhee, Sang-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.2
    • /
    • pp.23-32
    • /
    • 2011
  • The purpose of this study is to produce basic planning criteria required in ecological restoration and improvement works of streams in rural area through the application of stream assessment methods (water quality, soil environment, and ecological function assessment) at 6 study sites of Han River basin. The investigation results were as followings; 1) There were the evaluation items like a manure use, salt degree, river peripheral tree, which did not fitted to apply to domestic streams, in the SVAP (Stream Visual Assessment Protocol) and NRCS Riparian Assessment that were evaluation models developed in USDA. The area inhabitants with a little knowledge and education personally seems to utilize the evaluation methods through improvement partly with an aspect that evaluation is slightly easy. 2) From the stream assessment results, the construction of diverse pools, large woody debris and isolated backwater pool are needed to improve a few of problems observed at the mostly study sites. The result of NRCS Riparian Assessment showed that the improvement of stream bank vegetative communities is needed by planting tree with deep-binding root masses, and managing of noxious weeds and exotic undesirable plants. 3) Summing up, the assessment results showed that the assessment scores were higher at upstream than downstream, the stream with totally maintenance than that with partly maintenance, the stream with slope bank than that with vertical bank, and the stream with a flood plain than that without a flood plain. So, the direction of stream maintenance projects must be set by consideration of those results.

The Management Plan for the Ecological Waterfront Space of Muan Changpo Lake (무안 창포호의 자연생태친수공간 조성을 위한 관리방안 기초 연구)

  • Seo, Jung-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.3
    • /
    • pp.15-30
    • /
    • 2019
  • Changpo Lake was created as a part of a land reclamation for refugee self-helping projects. It shows characteristics of a fresh water lake, and still retains the early appearance of reclamation that surrounding regions have not been developed into farm lands. Shallow wetland has formed around the lake, which provides great conditions for diverse lives, and surrounding earthiness is favorable for growth of vegetation and restoration of the ecosystem. However, as facilities of the Muan International Airport nearby Changpo Lake are expanding and barns are being constructed, artificialness is gradually increasing. Particularly, since pollution sources such as sport facilities, farm lands and barns are scattered around Changpo Lake, pollutants are flowing in constantly. Accordingly, the results for setting up management areas according to the spatial characteristics and creating natural ecological spaces near Changpo Lake, Taebongcheon stream and Hakgyecheon stream are as follows. First, the creation of a natural eco-friendly waterfront space should be promoted by securing the health of the aquatic ecosystem and restoring species and the ecosystem. In addition, a consultative body needs to be formed to lead local residents to participating in river investigation and monitoring, maintenance, and management through role sharing. Second, the basic direction of the spatial management plan is to keep the unique charm of Changpo Lake, maintain harmony with nature, create diverse waterfront areas, and secure the continuity of Changpo Lake and inflow streams. Moreover, the area should be divided into three zones such as a conservation zone, a restoration zone and a waterfront zone, and for each zone, the preservation of vegetation, the creation of ecological wetlands and restoration of the ecotone and ecological nature need to be promoted. Third, facilities and activity programs for each space of Changpo Lake should be operated for efficient management of protected areas. In order to suit the status of each space, biological habitats, water purification spaces, experiential and learning spaces, and convenience and rest spaces should be organized and designated as research, monitoring, education, and tourism areas. Accordingly, points of interest should be set up within the corresponding area. In this study, there are many parts that need to be supplemented for immediate implementation since the detailed plans and project costs for the promotion of programs by area are not calculated. Therefore, it is necessary to make detailed project plans and consider related projects such as water quality, restoration of habitats, nature learning and observation, and experience of ecological environments based on the categories such as research, monitoring, education and tourism in the future.

Stable Channel Analysis and Design for the Abandoned Channel Restoration Site of Cheongmi Stream using Regime Theory (평형하상 이론을 이용한 청미천 구하도 복원 대상구간의 안정하도 평가 및 설계)

  • Ji, Un;Julien, Pierre Y.;Kang, Joon Gu;Yeo, Hong Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.305-313
    • /
    • 2010
  • River restoration or rehabilitation should be conducted in a way to maximize the channel stability with natural river configuration close to the equilibrium condition considering divers aspects of fluvial hydraulics, erosion and sedimentation, fluvial geomorphology, and ecological environment and to minimize the maintenance work. Therefore, the channel stability evaluation for present condition based on the equilibrium channel concept should be preceded for the river restoration project. Methods for equilibrium channel theory have generally been developed following either analytical regime theory or empirical regime theory. The main purpose of this paper is to evaluate the stability of present channel condition for the section of abandoned channel restoration in Cheongmi Stream using the Stable channel Analytical Model (SAM) and equilibrium hydraulic geometry equations. The results of analytical and empirical regime theories should provide fundamental and essential information to design the stable channel geometry. As a calculation result of Copeland's method for the study reach, the equilibrium channel has a narrower channel width, deeper water depth, and more gentle slope than the present channel geometry. As results of equilibrium hydraulic geometry equations, predicted equilibrium widths are less than the channel width in the field. It is represented that the current bed slope must be gentle to reach the equilibrium condition according to the results of Julien and Wargadalam method.