• 제목/요약/키워드: Stream Mining

검색결과 153건 처리시간 0.028초

빈발 패턴 트리 기반 XML 스트림 마이닝 (Frequent Patten Tree based XML Stream Mining)

  • 황정희
    • 정보처리학회논문지D
    • /
    • 제16D권5호
    • /
    • pp.673-682
    • /
    • 2009
  • 웹상에서 데이터 교환과 표현을 위한 표준으로 XML 데이터가 널리 사용되고 있으며 유비쿼터스 환경에서 XML 데이터의 형태는 연속적이다. 이와 관련하여 XML 스트림 데이터에 대한 빈발 구조 추출 및 효율적인 질의처리를 위한 마이닝 방법들이 연구되고 있다. 이 논문에서는 슬라이딩 윈도우 기반으로 하여 XML 스트림 데이터로부터 최근 윈도우 범위에 속하는 데이터에 대한 빈발 패턴 구조를 추출하기 위한 마이닝방법을 제안한다. 제안된 방법은 XML 스트림 데이터를 트리집합 모델, XFP_tree로 표현하고 이를 이용하여 최근의 데이터에 대한 빈발구조 패턴을 빠르게 추출한다.

데이터 스트림 환경에서 효율적인 빈발 항목 집합 탐사 기법 (A Method for Frequent Itemsets Mining from Data Stream)

  • 서복일;김재인;황부현
    • 정보처리학회논문지D
    • /
    • 제19D권2호
    • /
    • pp.139-146
    • /
    • 2012
  • 데이터 마이닝은 다양한 분야에서 축적된 데이터로부터 필요한 지식을 탐사하기 위하여 널리 이용되고 있다. 연관규칙을 탐사하기 위하여 이벤트의 빈발 횟수에 기반을 둔 많은 방법들이 존재하지만, 이들은 이벤트가 연속적으로 발생하는 스트림 환경에는 적합하지 않다. 또한 실시간으로 연관규칙을 탐사해야 하는 스트림 환경에 적용하기에는 많은 비용이 든다. 이 논문에서는 스트림 환경에서 연관규칙을 탐사하기 위한 새로운 방법을 제안한다. 제안하는 방법은 데이터 스트림에서 목적 이벤트의 발생 간격에 따른 가변 윈도우로부터 이벤트의 존재 유무에 근거한 COBJ(Count object) 계산법을 이용하여 데이터 항목을 추출한다. 추출된 데이터는 FPMDSTN(Frequent Pattern Mining over Data Stream using Terminal Node) 알고리즘을 통해 실시간으로 연관규칙을 탐사한다. 실험 결과를 통해 제안하는 방법이 기존의 방법에 비해 스트림 환경에 효율적임을 보인다.

슬라이딩 윈도우 기반의 스트림 하이 유틸리티 패턴 마이닝 기법 성능분석 (Performance Analysis of Siding Window based Stream High Utility Pattern Mining Methods)

  • 양흥모;윤은일
    • 인터넷정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.53-59
    • /
    • 2016
  • 최근 무선 센서 네트워크, 사물 인터넷, 소셜 네트워크 서비스와 같은 다양한 응용 분야에서 대용량 스트림 데이터가 실시간으로 생성되고 있으며, 효율적인 기법을 통해 처리 및 분석하여 유용한 정보를 찾아내고, 이를 의사 결정을 위해 사용할 수 있도록 하는 것은 중요한 이슈 중에 하나이다. 스트림 데이터는 끊임없이 빠른 속도로 생성되므로 최소한의 접근을 통해 처리해야 하며, 신속한 저전력 처리를 필요로 하는 자원이 제한된 환경에서 분석될 수 있도록 적합한 기법이 요구된다. 이러한 문제를 해결하기 위해, 슬라이딩 윈도우 개념이 제안되어 연구되고 있다. 한편, 대용량 데이터로부터 의미 있는 정보를 찾아내기 위한 데이터 마이닝 기법 중에 하나인 패턴 마이닝은 중요 정보를 패턴 형태로 추출한다. 전통적인 빈발 패턴 마이닝은 이진 데이터베이스를 대상으로 하고 모든 아이템을 동일한 중요도로 고려함으로써 데이터 마이닝 분야에서 중요한 역할을 수행해 왔지만, 실제 데이터 특성을 반영하지 못하는 단점을 지닌다. 하이 유틸리티 패턴 마이닝은 비 이진 데이터베이스로부터 상대적인 아이템 중요도를 반영하여 더욱 의미 있는 정보를 찾아내기 위해 제안되었다. 정적 데이터를 대상으로 하는 하이 유틸리티 패턴 마이닝 기법은 그러나 스트림 데이터 처리에 적합하지 못하다. 제한된 환경에서 스트림 데이터의 특성을 반영하고 효율적으로 처리하여 중요한 정보를 찾아내기 위해 슬라이딩 윈도우 기반의 접근법이 제안되었다. 본 논문은 슬라이딩 윈도우 기반 하이 유틸리티 패턴 마이닝 기법들의 성능을 평가하고 분석하여 해당 기법들의 특성 및 발전 방향을 고찰한다.

능동적 슬라이딩 윈도우 기반 빈발구조 탐색 기법 (A Method of Frequent Structure Detection Based on Active Sliding Window)

  • 황정희
    • 디지털콘텐츠학회 논문지
    • /
    • 제13권1호
    • /
    • pp.21-29
    • /
    • 2012
  • 최근 인터넷의 급격한 발전과 유비쿼터스 컴퓨팅 환경 그리고 센서 네트워크와 같은 많은 정보들의 교환이 이루어지는 환경에서 연속적으로 전송되는 데이터에 대한 처리가 요구되고 있다. 이와 관련하여 XML 스트림 데이터에 대한 빈발구조 추출 및 효율적인 질의처리를 위한 마이닝 방법들이 연구되고 있다. 본 논문에서는 연속적으로 빠르게 발생하는 스트림 데이터로부터 유용한 정보를 발견하기 위한 기반 연구로써 트리거를 이용한 슬라이딩 윈도우 기반의 XML 빈발구조 탐색 방법을 제안한다. 제안된 방법은 스트림 데이터에 대한 마이닝과 연속질의 처리등을 위해 트리거를 이용하여 데이터의 흐름을 자동으로 제어할 수 있는 기반이 된다.

데이터 스트림 마이닝에서 정보 중요성 차별화를 위한 퍼지 윈도우 기법 (A Fuzzy Window Mechanism for Information Differentiation in Mining Data Streams)

  • 장중혁
    • 한국산학기술학회논문지
    • /
    • 제12권9호
    • /
    • pp.4183-4191
    • /
    • 2011
  • 구성요소가 지속적으로 생성되고 시간 흐름에 따라 변화되기도 하는 데이터 스트림의 특성을 고려하여 데이터 스트림 구성요소의 중요성을 발생 시간에 따라 차별화하기 위한 기법들이 활발히 제안되어 왔다. 기존의 방법들은 최근에 발생된 정보에 집중된 분석 결과를 제공하는데 효과적이나 보다 유연하게 다양한 형태로 정보 중요성을 차별화하는데 한계가 있다. 퍼지 개념에 기반한 정보 중요성 차별화는 이러한 한계를 보완하는 좋은 대안이 될 수 있다. 퍼지 개념은 기존의 뚜렷한 경계를 갖는 접근법의 문제점을 극복하고 실세계의 요구에 보다 부합되는 결과를 제공할 수 있는 방법으로 여러 데이터 마이닝 분야에서 널리 적용되어 왔다. 본 논문에서는 퍼지 개념을 적용하여 데이터 스트림 마이닝에서 정보 중요성 차별화에 효율적으로 활용될 수 있는 퍼지 윈도우 기법을 제안한다. 퍼지 캘린더를 포함한 기본적인 퍼지 개념에 대해서 먼저 기술하고, 다음으로 데이터 스트림 마이닝에서 퍼지 윈도우 기법을 적용한 가중치 패턴 탐색에 대한 세부 내용을 기술한다.

개방 데이터 마이닝에 효율적인 이동 윈도우 기법 (A Sliding Window Technique for Open Data Mining over Data Streams)

  • 장중혁;이원석
    • 정보처리학회논문지D
    • /
    • 제12D권3호
    • /
    • pp.335-344
    • /
    • 2005
  • 근래들어 구성 요소가 빠른 속도로 지속적으로 발생되는 무한 집합으로 정의되는 데이터 스트림에 대한 개방 데이터 마이닝 방법들이 활발히 제안되고 있다. 데이터 스트림에 내재된 정보들은 시간 흐름에 따른 변화의 가능성이 매우 높다. 따라서, 이러한 변화를 빠른 시간에 분석할 수 있다면 해당 데이터 스트림에 대한 분석에서 보다 유용한 정보를 제공할 수 있다. 본 논문에서는 개방 데이터 마이닝 환경에서 효율적인 최근 빈발 항목 탐색을 위한 이동 윈도우 기법을 제시한다. 해당 기법에서는 데이터 스트림이 지속적으로 확장되더라도 지연 추가 및 전지 작업을 적용하여 마이닝 수행과정에서의 메모리 사용량이 매우 작게 유지되며, 분석 대상 범위의 데이터 객체들을 반복적으로 탐색하지 않기 때문에 각 시점에서 마이닝 결과를 짧은 시간에 구할 수 있다. 더불어, 해당 방법은 데이터 스트림의 최근 정보에 집중한 분석을 통해 해당 데이터 집합의 변화를 효율적으로 감지할 수 있다.

Mining Frequent Itemsets with Normalized Weight in Continuous Data Streams

  • Kim, Young-Hee;Kim, Won-Young;Kim, Ung-Mo
    • Journal of Information Processing Systems
    • /
    • 제6권1호
    • /
    • pp.79-90
    • /
    • 2010
  • A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. Data mining over data streams should support the flexible trade-off between processing time and mining accuracy. In many application areas, mining frequent itemsets has been suggested to find important frequent itemsets by considering the weight of itemsets. In this paper, we present an efficient algorithm WSFI (Weighted Support Frequent Itemsets)-Mine with normalized weight over data streams. Moreover, we propose a novel tree structure, called the Weighted Support FP-Tree (WSFP-Tree), that stores compressed crucial information about frequent itemsets. Empirical results show that our algorithm outperforms comparative algorithms under the windowed streaming model.

지구 통계학적 방법에 의한 충남 탄전 지역 하상퇴적물의 미량원소 오염조사 (Investigation of trace element contamination in steam sediments in the Chungnam coal mine area using geostatistical approach)

  • 황춘길
    • 자원환경지질
    • /
    • 제32권1호
    • /
    • pp.63-72
    • /
    • 1999
  • In order to examine the contamination levels of trace elements in stream sediments in the Chungnam coal mine area, stream sediment and water samples were collected and analyzed for trace elements. The pH of stream water was neutral or weak-alkaline and the mobility of metal in stream sediments was supposed to be low. From the result of cluster analysis, non-polluted sampling stations can be distinguished from polluted sampling stations influenced by mining activities. The trace element concentrations in sediments from non-polluted zone were considered to be the natural backround concentrations of this area. The trace element concentrations in sediment samples from the mining area were higher than those from non-polluted area, and contaminated area of enriched trace element levels need to be properly managed. From the results of discriminant and regression analyses, concentrations of Cd, Cu, Pb AND zN and predicted values of Be, Mo, and Ni in Chungnam coal mine area were found to be lower than those in metal mining areas in Korea.

  • PDF

데이터 스트림 빈발항목 마이닝의 프라이버시 보호를 위한 더미 데이터 삽입 기법 (Dummy Data Insert Scheme for Privacy Preserving Frequent Itemset Mining in Data Stream)

  • 정재열;김기성;정익래
    • 정보보호학회논문지
    • /
    • 제23권3호
    • /
    • pp.383-393
    • /
    • 2013
  • 데이터 스트림 마이닝 기술은 실시간으로 발생하는 데이터를 분석하여 유용한 정보를 얻는 기술이다. 데이터 스트림 마이닝 기술 중에서 빈발항목 마이닝은 전송되는 데이터들 중에서 어떤 항목이 빈발한지 찾는 기술이며, 찾은 빈발항목들은 다양한 분야에서 패턴분석이나 마케팅의 목적으로 사용된다. 기존에 제안된 데이터 스트림 빈발항목 마이닝은 악의적인 공격자가 전송되는 데이터를 스니핑할 경우 데이터 제공자의 실시간 정보가 노출되는 문제점을 가지고 있다. 이러한 문제는 전송되는 데이터에서 원본 데이터를 구별 못하게 하는 더미 데이터 삽입 기법을 통해 해결가능하다. 본 논문에서는 더미 데이터 삽입 기법을 이용한 프라이버시 보존 데이터 스트림 빈발항목 마이닝 기법을 제안한다. 또한, 제안하는 기법은 암호화 기법이나 다른 수학적 연산이 요구되지 않아 연산량 측면에서 효과적이다.

Dual-stream Co-enhanced Network for Unsupervised Video Object Segmentation

  • Hongliang Zhu;Hui Yin;Yanting Liu;Ning Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.938-958
    • /
    • 2024
  • Unsupervised Video Object Segmentation (UVOS) is a highly challenging problem in computer vision as the annotation of the target object in the testing video is unknown at all. The main difficulty is to effectively handle the complicated and changeable motion state of the target object and the confusion of similar background objects in video sequence. In this paper, we propose a novel deep Dual-stream Co-enhanced Network (DC-Net) for UVOS via bidirectional motion cues refinement and multi-level feature aggregation, which can fully take advantage of motion cues and effectively integrate different level features to produce high-quality segmentation mask. DC-Net is a dual-stream architecture where the two streams are co-enhanced by each other. One is a motion stream with a Motion-cues Refine Module (MRM), which learns from bidirectional optical flow images and produces fine-grained and complete distinctive motion saliency map, and the other is an appearance stream with a Multi-level Feature Aggregation Module (MFAM) and a Context Attention Module (CAM) which are designed to integrate the different level features effectively. Specifically, the motion saliency map obtained by the motion stream is fused with each stage of the decoder in the appearance stream to improve the segmentation, and in turn the segmentation loss in the appearance stream feeds back into the motion stream to enhance the motion refinement. Experimental results on three datasets (Davis2016, VideoSD, SegTrack-v2) demonstrate that DC-Net has achieved comparable results with some state-of-the-art methods.