웹상에서 데이터 교환과 표현을 위한 표준으로 XML 데이터가 널리 사용되고 있으며 유비쿼터스 환경에서 XML 데이터의 형태는 연속적이다. 이와 관련하여 XML 스트림 데이터에 대한 빈발 구조 추출 및 효율적인 질의처리를 위한 마이닝 방법들이 연구되고 있다. 이 논문에서는 슬라이딩 윈도우 기반으로 하여 XML 스트림 데이터로부터 최근 윈도우 범위에 속하는 데이터에 대한 빈발 패턴 구조를 추출하기 위한 마이닝방법을 제안한다. 제안된 방법은 XML 스트림 데이터를 트리집합 모델, XFP_tree로 표현하고 이를 이용하여 최근의 데이터에 대한 빈발구조 패턴을 빠르게 추출한다.
데이터 마이닝은 다양한 분야에서 축적된 데이터로부터 필요한 지식을 탐사하기 위하여 널리 이용되고 있다. 연관규칙을 탐사하기 위하여 이벤트의 빈발 횟수에 기반을 둔 많은 방법들이 존재하지만, 이들은 이벤트가 연속적으로 발생하는 스트림 환경에는 적합하지 않다. 또한 실시간으로 연관규칙을 탐사해야 하는 스트림 환경에 적용하기에는 많은 비용이 든다. 이 논문에서는 스트림 환경에서 연관규칙을 탐사하기 위한 새로운 방법을 제안한다. 제안하는 방법은 데이터 스트림에서 목적 이벤트의 발생 간격에 따른 가변 윈도우로부터 이벤트의 존재 유무에 근거한 COBJ(Count object) 계산법을 이용하여 데이터 항목을 추출한다. 추출된 데이터는 FPMDSTN(Frequent Pattern Mining over Data Stream using Terminal Node) 알고리즘을 통해 실시간으로 연관규칙을 탐사한다. 실험 결과를 통해 제안하는 방법이 기존의 방법에 비해 스트림 환경에 효율적임을 보인다.
최근 무선 센서 네트워크, 사물 인터넷, 소셜 네트워크 서비스와 같은 다양한 응용 분야에서 대용량 스트림 데이터가 실시간으로 생성되고 있으며, 효율적인 기법을 통해 처리 및 분석하여 유용한 정보를 찾아내고, 이를 의사 결정을 위해 사용할 수 있도록 하는 것은 중요한 이슈 중에 하나이다. 스트림 데이터는 끊임없이 빠른 속도로 생성되므로 최소한의 접근을 통해 처리해야 하며, 신속한 저전력 처리를 필요로 하는 자원이 제한된 환경에서 분석될 수 있도록 적합한 기법이 요구된다. 이러한 문제를 해결하기 위해, 슬라이딩 윈도우 개념이 제안되어 연구되고 있다. 한편, 대용량 데이터로부터 의미 있는 정보를 찾아내기 위한 데이터 마이닝 기법 중에 하나인 패턴 마이닝은 중요 정보를 패턴 형태로 추출한다. 전통적인 빈발 패턴 마이닝은 이진 데이터베이스를 대상으로 하고 모든 아이템을 동일한 중요도로 고려함으로써 데이터 마이닝 분야에서 중요한 역할을 수행해 왔지만, 실제 데이터 특성을 반영하지 못하는 단점을 지닌다. 하이 유틸리티 패턴 마이닝은 비 이진 데이터베이스로부터 상대적인 아이템 중요도를 반영하여 더욱 의미 있는 정보를 찾아내기 위해 제안되었다. 정적 데이터를 대상으로 하는 하이 유틸리티 패턴 마이닝 기법은 그러나 스트림 데이터 처리에 적합하지 못하다. 제한된 환경에서 스트림 데이터의 특성을 반영하고 효율적으로 처리하여 중요한 정보를 찾아내기 위해 슬라이딩 윈도우 기반의 접근법이 제안되었다. 본 논문은 슬라이딩 윈도우 기반 하이 유틸리티 패턴 마이닝 기법들의 성능을 평가하고 분석하여 해당 기법들의 특성 및 발전 방향을 고찰한다.
최근 인터넷의 급격한 발전과 유비쿼터스 컴퓨팅 환경 그리고 센서 네트워크와 같은 많은 정보들의 교환이 이루어지는 환경에서 연속적으로 전송되는 데이터에 대한 처리가 요구되고 있다. 이와 관련하여 XML 스트림 데이터에 대한 빈발구조 추출 및 효율적인 질의처리를 위한 마이닝 방법들이 연구되고 있다. 본 논문에서는 연속적으로 빠르게 발생하는 스트림 데이터로부터 유용한 정보를 발견하기 위한 기반 연구로써 트리거를 이용한 슬라이딩 윈도우 기반의 XML 빈발구조 탐색 방법을 제안한다. 제안된 방법은 스트림 데이터에 대한 마이닝과 연속질의 처리등을 위해 트리거를 이용하여 데이터의 흐름을 자동으로 제어할 수 있는 기반이 된다.
구성요소가 지속적으로 생성되고 시간 흐름에 따라 변화되기도 하는 데이터 스트림의 특성을 고려하여 데이터 스트림 구성요소의 중요성을 발생 시간에 따라 차별화하기 위한 기법들이 활발히 제안되어 왔다. 기존의 방법들은 최근에 발생된 정보에 집중된 분석 결과를 제공하는데 효과적이나 보다 유연하게 다양한 형태로 정보 중요성을 차별화하는데 한계가 있다. 퍼지 개념에 기반한 정보 중요성 차별화는 이러한 한계를 보완하는 좋은 대안이 될 수 있다. 퍼지 개념은 기존의 뚜렷한 경계를 갖는 접근법의 문제점을 극복하고 실세계의 요구에 보다 부합되는 결과를 제공할 수 있는 방법으로 여러 데이터 마이닝 분야에서 널리 적용되어 왔다. 본 논문에서는 퍼지 개념을 적용하여 데이터 스트림 마이닝에서 정보 중요성 차별화에 효율적으로 활용될 수 있는 퍼지 윈도우 기법을 제안한다. 퍼지 캘린더를 포함한 기본적인 퍼지 개념에 대해서 먼저 기술하고, 다음으로 데이터 스트림 마이닝에서 퍼지 윈도우 기법을 적용한 가중치 패턴 탐색에 대한 세부 내용을 기술한다.
근래들어 구성 요소가 빠른 속도로 지속적으로 발생되는 무한 집합으로 정의되는 데이터 스트림에 대한 개방 데이터 마이닝 방법들이 활발히 제안되고 있다. 데이터 스트림에 내재된 정보들은 시간 흐름에 따른 변화의 가능성이 매우 높다. 따라서, 이러한 변화를 빠른 시간에 분석할 수 있다면 해당 데이터 스트림에 대한 분석에서 보다 유용한 정보를 제공할 수 있다. 본 논문에서는 개방 데이터 마이닝 환경에서 효율적인 최근 빈발 항목 탐색을 위한 이동 윈도우 기법을 제시한다. 해당 기법에서는 데이터 스트림이 지속적으로 확장되더라도 지연 추가 및 전지 작업을 적용하여 마이닝 수행과정에서의 메모리 사용량이 매우 작게 유지되며, 분석 대상 범위의 데이터 객체들을 반복적으로 탐색하지 않기 때문에 각 시점에서 마이닝 결과를 짧은 시간에 구할 수 있다. 더불어, 해당 방법은 데이터 스트림의 최근 정보에 집중한 분석을 통해 해당 데이터 집합의 변화를 효율적으로 감지할 수 있다.
A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. Data mining over data streams should support the flexible trade-off between processing time and mining accuracy. In many application areas, mining frequent itemsets has been suggested to find important frequent itemsets by considering the weight of itemsets. In this paper, we present an efficient algorithm WSFI (Weighted Support Frequent Itemsets)-Mine with normalized weight over data streams. Moreover, we propose a novel tree structure, called the Weighted Support FP-Tree (WSFP-Tree), that stores compressed crucial information about frequent itemsets. Empirical results show that our algorithm outperforms comparative algorithms under the windowed streaming model.
In order to examine the contamination levels of trace elements in stream sediments in the Chungnam coal mine area, stream sediment and water samples were collected and analyzed for trace elements. The pH of stream water was neutral or weak-alkaline and the mobility of metal in stream sediments was supposed to be low. From the result of cluster analysis, non-polluted sampling stations can be distinguished from polluted sampling stations influenced by mining activities. The trace element concentrations in sediments from non-polluted zone were considered to be the natural backround concentrations of this area. The trace element concentrations in sediment samples from the mining area were higher than those from non-polluted area, and contaminated area of enriched trace element levels need to be properly managed. From the results of discriminant and regression analyses, concentrations of Cd, Cu, Pb AND zN and predicted values of Be, Mo, and Ni in Chungnam coal mine area were found to be lower than those in metal mining areas in Korea.
데이터 스트림 마이닝 기술은 실시간으로 발생하는 데이터를 분석하여 유용한 정보를 얻는 기술이다. 데이터 스트림 마이닝 기술 중에서 빈발항목 마이닝은 전송되는 데이터들 중에서 어떤 항목이 빈발한지 찾는 기술이며, 찾은 빈발항목들은 다양한 분야에서 패턴분석이나 마케팅의 목적으로 사용된다. 기존에 제안된 데이터 스트림 빈발항목 마이닝은 악의적인 공격자가 전송되는 데이터를 스니핑할 경우 데이터 제공자의 실시간 정보가 노출되는 문제점을 가지고 있다. 이러한 문제는 전송되는 데이터에서 원본 데이터를 구별 못하게 하는 더미 데이터 삽입 기법을 통해 해결가능하다. 본 논문에서는 더미 데이터 삽입 기법을 이용한 프라이버시 보존 데이터 스트림 빈발항목 마이닝 기법을 제안한다. 또한, 제안하는 기법은 암호화 기법이나 다른 수학적 연산이 요구되지 않아 연산량 측면에서 효과적이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권4호
/
pp.938-958
/
2024
Unsupervised Video Object Segmentation (UVOS) is a highly challenging problem in computer vision as the annotation of the target object in the testing video is unknown at all. The main difficulty is to effectively handle the complicated and changeable motion state of the target object and the confusion of similar background objects in video sequence. In this paper, we propose a novel deep Dual-stream Co-enhanced Network (DC-Net) for UVOS via bidirectional motion cues refinement and multi-level feature aggregation, which can fully take advantage of motion cues and effectively integrate different level features to produce high-quality segmentation mask. DC-Net is a dual-stream architecture where the two streams are co-enhanced by each other. One is a motion stream with a Motion-cues Refine Module (MRM), which learns from bidirectional optical flow images and produces fine-grained and complete distinctive motion saliency map, and the other is an appearance stream with a Multi-level Feature Aggregation Module (MFAM) and a Context Attention Module (CAM) which are designed to integrate the different level features effectively. Specifically, the motion saliency map obtained by the motion stream is fused with each stage of the decoder in the appearance stream to improve the segmentation, and in turn the segmentation loss in the appearance stream feeds back into the motion stream to enhance the motion refinement. Experimental results on three datasets (Davis2016, VideoSD, SegTrack-v2) demonstrate that DC-Net has achieved comparable results with some state-of-the-art methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.