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Abstract—A data stream is a massive unbounded sequence of data elements continuously 
generated at a rapid rate. The continuous characteristic of streaming data necessitates 
the use of algorithms that require only one scan over the stream for knowledge discovery. 
Data mining over data streams should support the flexible trade-off between processing 
time and mining accuracy. In many application areas, mining frequent itemsets has been 
suggested to find important frequent itemsets by considering the weight of itemsets. In 
this paper, we present an efficient algorithm WSFI (Weighted Support Frequent Itemsets)-
Mine with normalized weight over data streams. Moreover, we propose a novel tree 
structure, called the Weighted Support FP-Tree (WSFP-Tree), that stores compressed 
crucial information about frequent itemsets. Empirical results show that our algorithm 
outperforms comparative algorithms under the windowed streaming model. 
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1. INTRODUCTION 

In recent years, advances in hardware technology have facilitated the ability to collect data 
continuously. For many recent applications, the concept of a data stream, possibly infinite, is 
more appropriate than a data set [1]. Previous studies have discussed data stream mining appli-
cations, such as manufacturing flow monitoring, sensor networks, stock exchange, telecommu-
nications data flow and performance measurement in network monitoring and traffic manage-
ment. Unlike data in traditional static databases, data streams are continuous, unbounded, and 
arrive at high speed. In many cases, these large volumes of data can be mined for interesting and 
relevant information in a wide variety of applications.  

In data mining and knowledge discovery technique areas, frequent pattern mining plays an 
important role but it does not consider different weight value of the items. On the other hand, in 
real world applications, specific patterns and items within the patterns have more importance or 
priority than other patterns. For example, the support of a diamond ring is very low compared to 
the support of hairpins. Hence, some items vary in importance and therefore should be given 
certain priority. In biomedical data analysis, some genes are more significant than others in 
causing particular diseases, and some genes are more effective than others in fighting diseases. 
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Weighted frequent pattern mining functions to retrieve this hidden knowledge from data sets.  
In this paper, we consider the problem of mining with weighted support over a data stream 

sliding window using limited memory space, called WSFI-Mine (Weighted Support Frequent 
Itemsets Mine). The proposed algorithm allows the user to specify the weight for each item. It 
can discover useful recent knowledge from a data stream by using a single scan. Based on the 
weighted support, we propose a new algorithm, to efficiently discover all the frequent itemsets 
from streams. Our method is driven by an external weight table or weight function. The pro-
posed WSFI-Mine method is designed to mine all frequent itemsets from one scan in the data 
streams.  

The WSFI-Mine algorithm has three phases. First, a data stream is divided into patterns of 
three categories such as frequent items, latent items and infrequent items. Second, we present a 
novel tree structure, called the WSFP-Tree (Weighted Support FP-Tree), that stores compressed 
crucial information about frequent itemsets. The proposed WSFP-Tree structure is an extended 
FP-Tree. Finally, the WSFI-Mine method discovers frequent itemsets.  

The remainder of this paper is organized as follows: In Section 2, we describe related work. In 
Section 3, we develop our proposed method for weighted support frequent itemsets mining over 
data streams. In Section 4, our experimental results are presented and analyzed. Finally, conclu-
sions are given in Section 5. 

 
 

2. RELATED WORK 
The problem of frequent itemsets mining is finding the complete set of itemsets satisfying a 

minimum support in the transaction database. Previous studies contributed to the efficient min-
ing of frequent itemsets over data streams [2, 3, 4]. Li et al. proposed prefix tree-based single-
pass algorithms, DSM-FI and DSM-MFI, to mine the set of all frequent itemsets and maximal 
frequent itemsets over the history of the data streams [5, 6]. Recently, a utility mining model 
was defined in [7]. Traditional association rules mining models assume that the utility of each 
item is always 1 and the sales quantity is either 0 or 1, thus it is only a special case of utility 
mining, where the utility or the sales quantity of each item could be any number. Chu et al. pro-
posed THUI-Mine that can identify the temporal high utility itemsets by generating fewer tem-
poral high transaction-weighted utilization 2-itemsets in data streams [8]. Giannella et al devel-
oped a FP-tree-based algorithm, FP-stream, to mine frequent itemsets at multiple time granulari-
ties by a novel titled-time windows technique [9]. Weighed frequent itemsets mining has been 
suggested to find important frequent itemsets by considering the weights of itemsets. Some 
weighted frequent pattern mining algorithms MINWAL [10], WARM [11], WAR [12] have 
been developed based on the Apriori algorithm [13]. The first FP-tree based weighted frequent 
pattern algorithms WFIM [14], WIP [15] show that the weighted support of an itemset does not 
have the property of downward closure. By using an efficient tree structure, Ahmed et al pro-
pose a sliding window based novel technique WFPMDS. It requires only a single-pass of data 
stream for tree construction and mining operations [16]. The existing algorithms cannot be ap-
plied for stream data mining because they require multiple scans. Moreover, they cannot extract 
the recent change of pattern in a data stream adaptively. This paper can mine dynamically using 
maintained usage patterns information from a previous sliding time. 
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3. PROPOSED ALGORITHM 
In this section, we suggest frequent itemsets mining with normalized weight in continuous da-

ta streams. Firstly, we describe the definition of a set of terms that leads to the formal definition 
of the weighted support mining formula.  

 
3.1 Preliminaries 

Let I={i1, i2, …, im}be a set of items, a transaction T= (tid, x1x2…xn), xi  I, for 1≤ i ≤ n, is a set 
of items, while n is called the size of the transaction, and each transaction has a unique transac-
tion identifier TID, A transaction generated at the kth turn is denoted by Tk and its transaction 
identifier TID is k. An itemset X={x1, x2, …, xn} is a set of items such that X  (2I –{ }) where 
2I is the power set of I. An itemset is a non-empty set of items. An itemset with size k is called a 
k-itemset. An itemset ={x1, x2, …, xn} is also represented as x1, x2, …, xn. When a new transac-
tion Tn is generated, where n is the latest incoming transaction Tn. i.e., D = <T1,T2,…, Tn} and 
the total number of transactions in Dn is denoted by |D|n. Table 1 shows an example with ∑I = 
{a,b,c,d,e,f}. A window can be composed of a fixed number of non-overlapping transactions. In 
Table 1, we consider that one window contains four transactions, window size is N = 4. 

Weight support of each item shows in Table 2. Each item is normalized as a weight value 
within a weight range, wsmin(X) ≤w(X) ≤wsmax(X). The normalized minimum weighted support, 
wsmin(X) = (support * wmin(X)) is defined as the value of multiplying the support of an itemset 
with each minimum weight of itemsets. The normalized maximum weighted support, wsmax(X) = 
(support * wmax(X)) is defined as the value of multiplying the support of an itemset with each 
maximum weight of itemsets. In Table 2, wsmin(X) ≤w(X) ≤wsmax(X) is 0.2 ≤ w(X) ≤ 0.8. 

A weighted support of an itemset is defined as the value that results from multiplying the 
itemsets support by the weight of the itemsets. The weighted support of the itemset, X, is given 
as follows: 

 
X(support*weight) = support(X) * weight(X)                   (1) 

 
An itemset X is called a weighted frequent itemset if the weighted support of the itemset is 

greater than or equal to the minimum threshold.  
 

Definition 1 Weighted Support, ws(X,Wt), the weight of item to reflect the importance of each 
item in the current sliding window Wt is defined as X(support*weight), where wmin(X) ≤w(X) ≤wmax(X) 
is the weight range. For example, the weighted support of item “a” is ws(a, W1) = 2*0.3 - 0.6, by 
Table 1 and Table 2. 

Table 1.  Transaction of data streams 

window1 window2 

Tid itemset Tid itemset 

T1 (a, c, d) T2 (b, c, e) 

T2 (b, c, e) T3 (a, b, c, e) 

T3 (a, b, c, e) T4 (b, e) 

T4 (b, e) T5 (a, b, c f) 
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Definition 2 Minimum Weighted Support, wsmin(X), the value of multiplying the support of an 
itemset with each minimum weight of itemset is defined as support * wmax(X). The minimum 
weighted support of item ‘a’, wsmin(a), is 0.4=2×0.2. 

 
Definition 3 Maximum Weighted Support, wsmax(X), the value of multiplying the support of an 

itemset with each maximum weight of itemset is defined as support * wmax(X). The maximum 
weighted support of item a, wsmax(a), is 1.6=2×0.8. 

 
Definition 4 Weighted Support Frequent Itemset, an itemset X is called a WSFI, if the 

ws(X,Wt) is more than a minimum weighted support (wsmin(X)) and it is also less than a maxi-
mum weighted support (wsmax(X)).  

 
Weighted frequent itemsets mining is attractive in that important patterns are discovered. 

Generally, the normalized weighted support of frequent itemsets is no less than the minimum 
support. Therefore, the two second factors φ and ε are each termed the user-defined minimum 
weighted support threshold and the minimum weighted support error threshold, respectively. So, 
the user-defined minimum weighted support threshold, φ, is given as follows: 

 
φ = ((Max(wsmin(X)) + Min(wsmax(X))) / 2                    (2) 

 
The user-defined minimum weighted support error threshold, ε, is given as follows: 
 

ε = ((Min(wsmin(X)) + Min(wsmax(X))) / 2                    (3) 
 
In our proposed method, the embedded itemsets in the data streams can be divided into three 

patterns: frequent, latent, and infrequent. An itemset X is a frequent itemset if ws(X) ≥ φ, where 
φ is a user-defined minimum weighted support threshold. An itemset X is a latent itemset if ε ≤ 
ws(X) < φ, where ε is the minimum weighted support error threshold in the range of [0, φ ]. An 
itemset X is an infrequent itemset if ws(X) < ε. An itemset X is termed a maximal frequent item-
set with weighted support if it is not a subset of any other frequent itemset.  

 
3.2 Frequent Itemsets with Normalized weight  

In this section, we illustrate how the weighted support frequent itemsets are defined by nor-
malized weight. First, we show Table 3. Consider the first five transactions in a transaction data 
stream, T1, T2, T3, T4, and T5, where a, b, c, d, e, and f are called items. Let the size of window w 
be 4 and a weight range is given as 0.2 ≤ w(X) < 0.8. Hence, the transaction data stream consists 
of two windows, w1 = T1, T2, T3, T4 and w2 = T2, T3, T4, T5. Each weight of itemset, w(X) is a = 
0.3, b=0.6, c=0.2, d=0.8, e=0.4 and f=0.2. Then, in window 1, the itemsets support are a=2, b=3, 
c=3, d=1, e=3 hence ws(X) is a=0.6, b=1.8, c=0.6, d=0.8, e=1.2. In normalized weight range of 

Table 2.  Weight values of each item (0.2 ≤ w(X) ≤ 0.8) 

item a b c d e f 
weight 0.3 0.6 0.2 0.8 0.4 0.2 
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itemset, wsmin is 0.2 and wsmax is 0.8. Therefore, wsmin is a=0.4=(2*0.2), b=0.6=(3*0.2), 
c=0.6=(3*0.2), d=0.2=(1*0.2), e=0.6=(3*0.2). The resulting maximum Max (wsmin(X)) is 0.6 and 
wsmax(X) is a=1.6= (2*0.8), b=2.4=(3*0.8), c=2.4=(3*0.8), d=0.8=(1*0.8), e=2.4= (3*0.8). The 
resulting minimum of X, Min (wsmax(X)) is 0.8. By observation, we obtain that Max (wsmin(X)) = 
0.6, Min (wsmax(X)) = 0.8 and Min(wsmin(X)) = 0.2.  

From equations (2) and (3), we conclude that φ is 0.7=(0.6+0.8)/2 and ε is 0.5=(0.2+0.8)/2. 
As a result, an itemset X is a frequent pattern if ws(X) ≥ 0.7, where b, d, and e. The itemsets a 
and c represent a latent pattern, with 0.5 ≤ w(X) < 0.7. Itemset X is pruned as an infrequent pat-
tern, ws(X) < 0.5. 

 
3.3 WSFI-Mine Method  

With streaming databases, memory is often limited. It is hard to store large itemsets in memory. 
In this section, we propose a WSFI-Mine that can mine dynamically maintained usage patterns 
using information from a previous sliding time that can be updated in real time. The WSFI-Mine 
algorithm has three phases: the normalization of weight support and dividing patterns into three 
categories, the construction of the WSFP-Tree, and a frequent itemset discovery scheme. Con-
struction of a WSFP-Tree ensures that frequent pattern mining can be performed efficiently. A 
WSFP-Tree is a data structure based on an extended FP-tree. It serves to store compressed cru-
cial information about frequent patterns. WSFP-Tree construction is described as follows: We 
scan the stream database only once, counting the support for each item and checking the weight 
of each item. Then, the product of multiplying the item support by the weight of each item must 
be sorted in descending order. The window slide has a fixed number of transactions, w. T1, T2, 
T3, T4, T5, and T6 are transactions; a, b, c, d, e, f, and g are items. Let the size of the sliding win-
dow w be 4: the transaction data stream consists of three sliding windows, w1, w2 and w3. As 
shown in Figure 1, the weighted support of items of each window in the sliding phase is shown 
in Table 4. For example, consider the weight support of each item in the windowsliding phase, 
and let φ and ε, be 0.7 and 0.5 respectively. Notice Table 4. First, the first sliding window w1 
consists of four transaction data streams: [T1, <acd >], [T2, <bce>], [T3, <abce>], and [T4, <be>]. 
Here, item ‘a’ appears in T1 and T3 of window slide w1: the weight of ‘a’ is 0.3. Hence, ws(a) is 
0.6, the weighted support of ‘a’. Similarly, ws(b) = 1.8, ws(c) = 0.6, and ws(e) = 1.2. Next, we 
sort the items by weight support in descending order. The result is a descending ordered list 
<bedac> in sliding window w1. Second, w2 generates a descending list <beacf>, in the sliding 
window w2, after T1 is removed from w1: T5 is appended to w2.  

Next, the new items f and g appear in the third sliding window w3 from the data stream; item 

Table 3.  The normalized weight values for each sliding window within a weight range 

window1  window2  
item sup(X, w1) wsmin(X)≤ ws(X) ≤ wsmax(X)   ws(X) item sup(X, w2)   wsmin(X)≤ ws(X) ≤ wsmax(X)     ws(X) 

a [2:0.3] 0.4 ≤ ws(a) ≤ 1.6 0.6 a [2:0.3] 0.4 ≤ ws(a) ≤ 1.6 0.6 

b [3:0.6] 0.6 ≤ ws(b) ≤ 2.4 1.8 b [4:0.6] 0.8 ≤ ws(b) ≤ 3.2 2.4 

c [3:0.2] 0.6 ≤ ws(c) ≤ 2.4 0.6 c [3:0.2] 0.6 ≤ ws(c) ≤ 2.4 0.6 

d [1:0.8] 0.2 ≤ ws(d) ≤ 0.8 0.8 d [0:0.8] 0 ≤ ws(d) ≤ 0 0 

e [3:0.4] 0.6 ≤ ws(e) ≤ 2.4 1.2 e [3:0.4] 0.6 ≤ ws(e) ≤ 2.4 1.2 

    f [1:0.2] 0.2 ≤ ws(f) ≤ 0.8 0.2 
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support is f: 0.2 and g: 0.9, where w3 is carried from w2 - T2+ T6, then, w3 generates a descending 
list <bagdec>. Next, the weight support of item f, ws( f ) = 0.2 is deleted based on the pruning 
conditions, as the infrequent pattern is less than the minimum weighted support error threshold ε, 
i.e., ws( f ) < 0.5. 

 
3.4 WSFP-Tree Construction  

In the previous observations, the construction of a WSFP-Tree is described as follows: First, 
we determine the descending list by reading the data stream in w1. The frequent items in each 
transaction data stream are listed accordingly as in Figure 1. The descending list items are stored 
in descending order of weight support in the header table. The header table of the WSFP-Tree 
has three columns, the item-id, weight support of each item, and node link. The FP-Tree pro-
posed by Han et al [17] stores the item id in ascending order; while in our WSFP-Tree, the item 
ids are mapped to a descending order list. Each node of the WSFP-Tree contains an array of 
counts for items with weight. The following is a more detailed analysis of this aspect. We use a 
header table to store all the descending list items by weight support. To build a WSFP-Tree, first 
we create a root node as “null”. Next, by scanning the descending ordered transaction data 
streams, the WSFP-Tree is constructed as follows: Let the descending ordered list of weighted 
support items in sliding window w1 be <bedac> and the minimum weighted support error 
threshold be 0.5 (i.e., ε = 0.5). Thus, after a scan of the first sliding window leads to the con-
struction of Figure 2, each node in the WSFP-Tree has four fields: item name, count, weight, 

Table 4.  Support and weighted support in each window sliding phase 

window1 window2 window3 
w1 w1-T1+T5 w1-T2+T6 

<b e d a c> <b e a c f> <b a g d e c> 
Item 

sup(x) ws(x) sup(x) ws(x) sup(x) ws(x) 
[a:0.3] 2 0.6 2 0.6 3 0.9 
[b:0.6] 3 1.8 4 2.4 3 1.8 
[c:0.2] 3 0.6 3 0.6 3 0.6 
[d:0.8] 1 0.8 0 0.0 1 0.8 
[e:0.4] 3 1.2 3 1.2 2 0.8 
[f:0.2]   1 0.2 1 0.2 
[g:0.9]     1 0.9 

 

 
Fig. 1.  The itemsets list after descending order 
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and node-link. In Figure 3, for the second sliding window, w2, a new transaction T5 is added to 
the window stream. Then, item d in T1 does not appear in the WSFP-Tree and a new item f will 
be updated in the header table and added to the WSFP-Tree. Next, the scan of the third sliding 
window w3 leads to the construction of Figure 4. It depicts the pruning of infrequent item f after 
deleting T2 and inserting T6. Data changes usually with time in the streams. A currently infre-
quent pattern may become frequent in the future.  

Hence, as shown Figure 5, we have to be careful not to prune infrequent itemsets too early. (i.e., 
item f in w2 (latent pattern) → item f in w3 (infrequent pattern). The algorithm to construct the 
WSFP-Tree is as follows. This structure has several advantages. First, we will not miss itemsets 
even if they were infrequent items in the previous sliding window. (e.g., item d). Second, we 
will save memory. It does not need to have the header table for itemsets with less than the 
weighted support. (e.g., item f).  
 
3.5 WSFI-Mine Algorithm 

The algorithm for the WSFI-Mine is described as follows: Initially, the WSFI-Mine reads a 
stream database TDS from the current window. Then, the WSFI-Mine processes the weight of 
each item and sorts the weighted support itemsets in each sliding window intodescending order. 

 
Fig. 2.  WSFP-Tree after inserting first sliding      Fig. 3.  WSFP-Tree after deleting T1 and inserting 
window w1                                                         T5 in the second sliding window w2 

 

 

Fig. 4.  WSFP-tree depicting pruning item f after    Fig. 5.  WSFP-tree by inserting and deleting  
and deleting T2 inserting T6 in the third sliding      In window 
window w3 
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Next, a WSFP-Tree is constructed from the descending order list. Finally, frequent itemsets min-
ing is usually performed. 

 
 

4. EXPERIMENTAL RESULTS 
4.1 Performance Comparison 

We evaluate the performance of our WSFI-Mine algorithm by varying the usage of the mem-
ory space. We also analyze the execution time. The simulation is performed in Visual C++ and 
conducted in a machine with a 3GHz CPU and 1GB memory. We use two sets of synthetic data-
bases from an IBM Quest data generator. Table 5 illustrates some of the parameters that we have 
controlled: the size of the sliding window 10K, the average size of the transaction T, the average 
size of the frequent itemsets I and we randomly generate the weight of each item in transaction, 
ranging from 0.2 to 0.8. Synthetic dataset T10I4D100K denotes the average size of the transac-
tions and I the average number of frequent itemsets. A Mushroom database has been used exten-
sively in the AI area.  

Input:  

(1) A Stream Database (TDS) 
(2) Normalized minimum weighted support (φ) 
(3) Normalized minimum weighted error support (ε)  
(4) Weighted Range 

Output:   WSFP-Tree, A set of weighted support frequent itemsets. 

Proce   dure:  

1. Scan a Stream Database and count support for each item. 
2. Multiply item support by the weight of each item. 
3. Sort them into a descending order list in a sliding window. 
4. Create the root of a WSFP-Tree. Next, each transaction performs as follows: 

4-1. Select the descending order frequent item and call: 
    insert_wsfp_tree (dsitem_list, T). 
4-2. The function insert_wsfp_tree (dsitem_list, T) is performed as follows: 

  (1) If T has a child node such that node.item =dsitem_list.item then increment the 
node’s count by 1 or create a new node with its count initialized to 1. 

  (2) Link its parent to T and link its node-link to the nodes with the same item name via
the node-link. 

  (3) If ε ≤ weighted support of node.item ≤φ then do not remove it from WSFP-Tree 
(latent pattern) or 

     If the weighted support of node.item ≤ ε then remove it from the WSFP-Tree in the 
next phase (infrequent pattern) 

5. The construction process of WSFP-Tree with respect to previous sliding window tree re-
sult is the same as in step 4 recursively. 

6. End. 

Fig. 6.  Pseudo code for the WSFI-Mine 

Table 5.  DATA SET 

Parameter Database 
No. of items Average length No. Records Window size 

T10I4D100K 
Mushroom 

1,000 
120 

10 
23 

100,000 
8124 

10K 
10K 
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In this experiment, we compare only the relative performance of the THUI-Mine [8], DSM-FI 
[5] and WSFI-Mine. Figures 7 and 8 show the execution times for the three algorithms on data-
set T10I4D100K and the Mushroom database, respectively, as the minimum support threshold is 
increased from 0.2% to 1%. As shown in figure 7 and figure 8, our algorithm leads to prominent 
performance improvement under different sizes of transactions. As shown in figures 9 and 10, 
when the minimum support threshold is decreased from 1% to 0.2%, our algorithm WSFI-Mine 
always generates far fewer candidates compared to the THUI-Mine and DSM-FI for various 
kinds of databases. Thus, we can conclude that the execution time is proportional to the number 
of candidates generated during the mining process.  

 
4.2 Scalability 

To test the scalability with the number of transactions, the T10.I4.DxxxK datasets were used. 
The WSFI-Mine is compared with the THUI-Mine. In Figure 11, both the WSFI-Mine and 
THUI-Mine show linear scalability with the number of transactions from 100K to 1000K. We 
tested different minimum support 0.2% and weight support 0.2 to 0.8. In Figure 11, we can see 
that the WSFI-Mine has good scalability in terms of number of transactions and becomes better 

    
Fig. 7.  Execution time on T10I4D100K          Fig. 8.  Execution time on Mushroom dataset 

 

    
Fig. 9.  The number of candidate itemsets on     Fig. 10.  The number of candidate itemsets  
T10I4D100K                                 on Mushroom 
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as the minimum support is increased. In comparison with other algorithms, the WSFI-Mine not 
only runs faster, it also has much better scalability in terms of base size.  

 
 

5. CONCLUSION 
This paper proposed a novel method to mine frequent itemsets from streams of datasets effi-

ciently and effectively in memory and runtime. The proposed WSFI-Mine algorithm can mine 
all frequent itemsets in one scan from the data stream. The WSFI-Mine’s contribution is to ef-
fectively execute frequents by generating constraint candidate itemsets. The proposed WSFP-
Tree is an extended FP-tree based data structure. It is an extended prefix-tree structure to store 
compressed, crucial information about frequent patterns. The evaluation demonstrates that the 
WSFI-mine outperforms the THUI-Mine and DSM-FI in mining frequent itemsets over data 
streams. 
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