• Title/Summary/Keyword: Stream Length

Search Result 562, Processing Time 0.03 seconds

Fractal Dimension of Stream Networks and Main Stream Length with Map Scale (지형도(地形圖) 축척(縮尺)에 따르는 하천 수로망(水路網)과 본류(本流) 하천길이에 관한 Fractal Dimension)

  • Jeon, Min Woo;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.97-106
    • /
    • 1992
  • Total length of stream networks and main stream length vary with topographic map scales, and the stream length of drainage basin on topographic map can be viewed as a fractal. Total length of stream network and main stream length are represented as only stream area ratio($R_a$) based on Horton's laws, thereafter the fractal dimensions of stream network and main stream length are derived as a simple function of stream length($R_L$) and stream area ratios($R_a$) respectively. The derived equations of fractal dimension are applied to Sansung basin in Kum River and compared with the equations already existed. The stream network appeared as space filling with fractal dimension near 2 as map scale increases, while main stream length shows near 1. The results of this study are expected to be helpful in the quantitative analysis of drainage network composition with map scale.

  • PDF

Estimation of Average Roughness Coefficients of Bocheong Stream Basin (보청천 유역의 평균조도계수 산정)

  • Jeon, Min-Woo;Lee, Hyo-Sang;Ahn, Sang-Uk;Cho, Young-Soo;Jeon, Man-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1306-1310
    • /
    • 2009
  • The roughness coefficients were estimated by the Manning's equation for the measured stage and flow velocity of Bocheong stream basin in Kum river. The relationships between the estimated roughness coefficients and the geomorphologic factors were formulated by the linear, logarithmic, exponential and power type function, thereafter correlation equations were presented. The correlation analysis was performed between the measured stream length and the basin area of Bocheong stream basin by the linear, logarithmic, exponential and power type function, and correlation equation for the stream length was given. The roughness coefficient has strong correlationship with stream slope, but low correlation coefficients with stream length and basin area. For the correlationship with the roughness coefficients and the stream slope, the logarithmic type function has the smallest correlation coefficient, on the other hand, the exponential type function has the largest correlation coefficient. For the relationship between the stream length and the basin area, the correlation coefficient of the logarithmic type function shows the smallest value, linear type function shows the largest value.

  • PDF

Evaluation of Watershed Stability by the Forest Environmental and Stream Morphological Factors (산림환경 및 하천형태인자에 의한 유역안정성 평가)

  • Jung, Won-Ok;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.1-11
    • /
    • 2001
  • This study was carried out to analyze the characteristics of forest environmental and stream morphological factors by using the quantification theory(I) for evaluation of the watershed stability. Present annual mean sediment yield of erosion control dams were investigated in 167 sites of erosion control dam constructed during 1986 to 1999 in Gyeongbuk. The results obtained from this study were summarized as follows; According to the coefficients of partial correlation, each factor affecting to sediment was shown in order of gravel contents, number of first streams order, number of total streams, length of total streams, forest type, length of main stream, parent rock, stand age, soil texture, stream order, slope gradient, soil depth and aspect. Descriptions of class I were as follow; Igneous rock of parent rock, hardwood stands of forest type, less than 20 year of stand age, less than 30cm of soil depth, sandy clay loam of soil texture, more than 41% of gravel contents, south~east of aspect, 2,501~3,500m of length of main stream, 21~25 of number of total streams, 5,501~10,000m of length of total streams, 3 or more than 4 of stream order, more than 16 of number of first stream orders and more than $31^{\circ}$ of slope gradient. Descriptions of class II were as follow; Metamorphic rock of parent rock, coniferous stands of forest type, more than 25 year of stand age, 31~40cm of soil depth, silt loam of soil texture, 11~20% of gravel contents, north~west of aspect, 2,501~3,500m of length of main stream, 16~20 of number of total streams, 3,501~5,500m of length of total streams, 3 of stream order, 11~15 of number of first stream orders and more than $31^{\circ}$ of slope gradient. Descriptions of class III were as follow; Sedimentary rock of parent rock, mixed stands of forest type, more than 25 year of stand age, more than 51cm of soil depth, silty clay loam of soil texture, less than 10% of gravel contents, south~west of aspect, less than 500m of length of main stream, less than 5 of number of total streams, less than 1,000m of length of total streams, less than 1 of stream order, less than 2 of number of first stream orders and less than $25^{\circ}$ of slope gradient. The prediction method of suitable site for erosion control dam divided into class I, II, and III for the convenience of use. The score of class I evaluated as a very unstable area was more than 8.4494. A score of class II was 8.4493 to 6.0452, it was evaluated as a moderate stable area, and class III was less than 6.0541, it was evaluated as a very stable area.

  • PDF

Derivation of Snyder's Synthetic Unit Hydrograph Using Fractal Dimension (프랙탈 차원을 이용한 스나이더 합성단위유량도 관계식 유도)

  • Go, Yeong-Chan
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.291-300
    • /
    • 1999
  • The Snyder's synthetic unit hydrograph method is selected to apply the concept of the fractal dimension by stream order for the practicable rainfall-runoff generation, and fourth types of the Snyder's relation are derived from topographic and observed unit hydrograph data of twenty-nine basins. As a result of the analysis of twenty-nine basins and the verification of two basins, the Snyder's relation which considers the fractal dimension of the stream length and uses calculated unit hydrograph data shows the best result. The concept of the fractal dimension by stream order is applied to the Snyder's synthetic unit hydrograph method. The topographic factors, used in the Snyder's synthetic unit hydrograph method, which have a property of the stream length like $L_{ma}$ (mainstream length) and $L_{ca}$ (length along the mainstream to a point nearest the watershed centroid) were considered. In order to simplify the fractal property of stream length, it is supposed that $L_{ma}$ has not the fractal dimension and the stream length between $L_{ma}$ and ($L_{ma}\;-\;L_{ca}$) has the fractal dimension of 1.027. From the utilization of this supposition, a new Snyder's relation which consider the fractal dimension of the stream length occurred by the map scale used was finally suggested.

  • PDF

Estimation of Fractal Dimension According to Stream Order in the leemokjung Subbasin (이목정 소유역의 하천차수를 고려한 프랙탈 차원의 산정)

  • Go, Yeong-Chan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.587-597
    • /
    • 1998
  • Researchers have suggested that the fractal dimension of the stream length is uniform in all the streams of the basin and the estimates of the fractal dimension are in between 1.09 and 1.13 which may be considerably large values. In this study, the fractal dimension for the Ieemokjung subbasin streams in the Pyungchang River basin which is one of the IHP representative basins in Korea are estimated for each stream order using three scale maps of a 1/50,000, 1/25,000, and 1/5,000. As a result, the fractal dimension of the stream length is different by stream order and the fractal dimension of all streams shows a lower value in comparison to that of the previous studies. As a result of the fractal dimension estimation for the Ieemokjung subbasin streams, we found that the fractal dimension of the stream length shows different estimates in stream orders. The fractal dimension of 1st and 2nd order stream is 1.033, and the fractal dimension of 3rd and 4th order stream is 1.014. This result is different from the previous studies that the fractal dimension of the stream length is uniform in all streams of the basin. The fractal dimension for a whole stream length is about 1.027. Therefore, the previous estimates of 1.09 and 1.13 suggested as the fractal dimension of the stream length may be overestimated in comparison with estimated value in this study.

  • PDF

Analysis of Geomorphological Characteristics of Bukhan River Basin based on Hydrologic Unit Map (수자원 단위지도를 기반으로 한 북한강 유역의 지형학적 특성 분석)

  • Park, Geun-Ae;Kwon, Hyung-Joong;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.241-251
    • /
    • 2006
  • This study analyzed the topographical characteristics by extracting property factors of stream (stream order, number of stream, stream length, mean stream length) and property factors of basin (basin area, basin length, total stream length, total number of stream, basin mean width, form factor, maximum stream order, basin density, stream frequency, relief ratio, mean elevation, mean, slope, maximum elevation) from DEM (digital elevation model) and stream network generated by 1:5,000 NGIS (national geographical information system) data for the Bukhan-river basin. In addition, topographical factors for upper, mid stream and lower stream were analyzed and the mutuality of the factors by linear and nonlinear regression curve was identified.

Spatial Distribution and Geomorphological Characteristics of Headwater Stream (Dorang) Catchments in Geum River Basin (금강유역 내 도랑유역 분포 및 지형적 특성 분석)

  • Kim, Haejung;Cho, Hong-Lae;Koo, Bhon Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.319-328
    • /
    • 2014
  • Dorang - the Korean term for headwater streams - occupy a large portion of the total stream length in a basin, and contribute significantly towards the quantitative and qualitative characteristics, and the ecosystem, of the main river. The Ministry of Environment of South Korea has supported the investigation of the status of Dorang in the nation's four major basins, since 2007. Without a widely accepted academic or legal definition of Dorang, however, there are limits to understand the distribution of Dorang at the national scale and to systematically compile a Dorang database. This paper, through a review of the stream classification system and Korean legal system delineating streams, defines Dorang as 1st and 2nd order streams according to the Strahler ordering method, in a 1:25,000 geographical scale. Analysis of the Geum River basin, with this definition, reveals that the total length of Dorang is 20,622.4 km (73.6% of total stream length), and the number of Dorang catchments is 23,639 (71.3% of the basin area). Further analysis of the geomorphological characteristics of Dorang catchments shows that the average total stream length is 1.1 km, average catchment length is 1.2 km, average drainage area is $0.4km^2$, and average drainage density is 3.08/km.

The Analysis of Fractal Dimension on the Main-Stream Length using Digital Elevation Model (수치고도모형을 이용한 본류하천길이에 관한 프랙탈 차원의 해석)

  • 차상화
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.915-923
    • /
    • 2002
  • Recently, GIS(Geographic Information System) is used to extract various hydrological factors from DEM(Digital Elevation Model) in river basin. Therefore, this study aims at the determination of river fractal dimension using DEM. In this paper, the main-stream length in river basin was grid-analyzed for each scale(1/5,000, 1/25,000, 1/50,000) and each cell size(5m$\times$5m, l0m$\times$l0m, 20m$\times$20m, 30m$\times$30m, 40m$\times$40m, 50m$\times$50m, 60m$\times$60m, 70m$\times$70m, 80m$\times$80m, 90m$\times$90m, 100m$\times$l00m, 120m$\times$120m, 150m$\times$150m) using GIS. Also, fractal dimension was derived by analyzing correlation among main-stream lengths, scale, and cell size which were calculated here. The result of calculating fractal dimension for each cell size shows that the fractal dimension on the main-stream length is 1.028.

Analysis of the characteristics of damaging factors in curved channel - Focus on the Namdae stream in GangNeung City - (하천만곡부의 피해인자 특성 조사 분석 - 강릉시 남대천을 중심으로 -)

  • Shim, Kee-Oh;Lee, Joon-Ho;Huh, Kyung-Han;Kim, Jin-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.13-19
    • /
    • 2004
  • The tremendous flood damage caused by Typhoon Rusa(2002) was occurred at GangNeung City in GangWon Province. Almost of the city region was inundated and most of the stream channel facilities were damaged by flash flood with heavy rainfalls. We have investigated seriously damaged parts of stream bank and tried to analyze the causes of damages focused on flow characteristics in curved channel. We analyzed the damage aspects of curved channel by examining geomorphological survey and hydrographical characteristics. Strong correlation was shown according to the regression analysis between length of stream and meander wave length, and meander belt and length of stream. Furthermore, enveloped curve was presented between bottom slope of channel and meander belt, and meander ratio and channel width. As a result, special consideration about stream flow characteristics are needed for engineers who design stream banks and channels.

Development of k-$\epsilon$ model for prediction of transition in flat plate under free stream with high intensity (고난류강도 자유유동에서 평판 경계층 천이의 예측을 위한 난류 모형 개발)

  • Baek, Seong Gu;Lim, Hyo Jae;Chung, Myung Kyoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.337-344
    • /
    • 2000
  • A modified k-$\epsilon$ model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing Length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a university model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity ( $1\%{\~}6\%$ ) under zero-pressure gradient. It was found that the profiles of mom velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily Predicted throughout the flow regions.

  • PDF