• Title/Summary/Keyword: Strawberry Growth

Search Result 268, Processing Time 0.033 seconds

Identification of Cylindrocarpon destructans Associated with Root Rot Disease of Strawberry (딸기 뿌리썩음병(病)에 관여하는 Cylindrocarpon destructans의 분리(分離) 동정(同定))

  • Sung, Jae-Mo;Song, Yoong-Nam;Yang, Sung-Suk
    • The Korean Journal of Mycology
    • /
    • v.13 no.3
    • /
    • pp.179-183
    • /
    • 1985
  • Cylindrocarpon spp. were isolated from the soil where strawberry was grown in Suweon by soil plate method: colonies reaching 10 mm diam. in seven days at about $20^{\circ}C$; sporodochia with cream to beige to conidial slime commonly produced; conidiophore repeatedly branched and bearing subulate phialides; macroconidia cylindrical in the center part, straight or slightly curved and mostly $1{\sim}3\;septate,\;22{\sim}45\;{\times}\;5.0{\sim}6.0\;{\mu}m$; chlamydospore abundantly produced, intercalary or terminal on mycelium, singly or in chains and smooth or warted. The hypha and spore were easily fused each other on water agar. This fungus was pathogenic strawberry as a result of inoculation test. The symptom showed dwarf and yellowing at top and rotted roots under the ground. The fungus was identified as Cylindrocarpon destructans Scholten from the shape of conidiophores and conidia, mycelial growth and pathogenicity test.

  • PDF

Spot Cooling System Development for Ever-bearing Strawberry by Using Low Density Polyethylene Pipe (연질 PE관을 이용한 여름딸기 부분냉방기술 개발)

  • Moon, Jong Pil;Kang, Geum Choon;Kwon, Jin Kyung;Lee, Su Jang;Lee, Jong Nam
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.149-158
    • /
    • 2014
  • The effects of spot cooling on growing ever-bearing strawberry in hydroponic cultivation during summer by spot cooling system was estimated in plastic greenhouse located in Pyeongchang. The temperature of cooling water was controlled by heat pump and maintained at the range of $15{\sim}20^{\circ}C$. Cooling pipes were installed in root zone and very close to crown. Spot cooling effect was estimated by applying system in three cases which were cooling root zone, crown plus root zone, and crown only. White low density polyethylene pipe in nominal diameter of 16 mm was installed on crown spot, and Stainless steel flexible pipe in nominal diameter of 15A was installed in root zone. Crown and root zone cooling water circulation was continuously performed at flowrates of 300 ~ 600 L/hr all day long. Strawberry yields by test beds were surveyed from Aug. 1 to Sep. 30. The accumulated yield growth rate compared with a control bed of crown cooling bed was 25 % and that of crown plus root zone cooling bed was 25 % and that of root zone cooling bed was 20 %. The temperatures of root spot in root zone cooling was maintained at $18{\sim}23.0^{\circ}C$ and that of crown spot in crown cooling was maintained at $19{\sim}24^{\circ}C$. Also, the temperatures of root spot in crown plus root zone cooling bed was maintained at $17.0{\sim}22.0^{\circ}C$ and that of crown spot was maintained at $19{\sim}25^{\circ}C$.

Impact of Transplant Timing of Mother Plants for Seedling Strawberries on Growth and Development of Daughter Plants and Initial Field Stage (딸기 육묘를 위한 모주의 정식시기가 자묘 소질 및 본포 초기생육에 미치는 영향)

  • Park, Gab-Soon;Kim, Young-Chil;Ann, Seoung-Won
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.289-294
    • /
    • 2016
  • In this study, we examined the impact of transplant timing of mother plants for seedling strawberry on growth and development of daughter plants and field stage. The leaf growth of treated mother plants and crown thickness were low when transplant was performed on April $10^{th}$. Based on the results collected until July $13^{th}$, the numbers of daughter plants with more than two leaves were 20.6 and 19.5 for March $10^{th}$ and March $25^{th}$, and these values decreased by April $10^{th}$ and April $25^{th}$ showing values of 15.1 and 11.8, respectively. After seedling growth was complete, leaf area and fresh weight of the saplings were remarkably low beginning from the transplant on April $10^{th}$. Crown thickness of saplings was generally lower when transplant timing was late. After 45 days of transplant leaf length and width were noticeably lower than the transplant on April $10^{th}$ and $25^{th}$. First cluster was 100% for both the March $10^{th}$ and $25^{th}$ transplant, followed April 10th and $25^{th}$ with values of 66% and 43%. The results revealed that transplant on March $10^{th}$ and $25^{th}$ had a greater positive impact on the growth and development of the strawberry cultivar 'Seolhyang'. A supplementary study will have to be conducted to determine the relationship between the harvest period of the first cluster and the yield of marketable strawberries depending on the transplanting time of mother plants.

An Analysis on Productivity Change in Environment-Friendly Farming of Fruit Vegetables (과채류 친환경 실천 농가의 생산성 변화 분석)

  • Choi, Don-Woo;Kim, Tae-Kyun
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.2
    • /
    • pp.335-345
    • /
    • 2014
  • The productivity decrease in environment-friendly farming is the biggest obstacle for the development of environment-friendly food market. This paper aimed to analyze the productivity change in environment-friendly farming of fruit vegetables (oriental melon, watermelon, and strawberry). Box-Cox transformation model was used to infer the functional form of productivity change. The results showed that the periods of productivity restoration to 90% level in oriental melon, strawberry, and watermelon were 14.1 years, 11.4 years, and 6.0 years, respectively. The forms of productivity restoration of fruit vegetables showed differences due to their growth characteristics, incidences of crop pests, preference for the environment- friendly agricultural products, cultivation period and so on. Because the form and period of productivity restoration were different depending on kinds of fruit vegetable, the government policy should be established considering this point of view.

Disinfection Effects of Electrolyzed Water on Strawberry and Quality Changes during Storage (전기분해수 처리에 의한 딸기의 살균 효과 및 저장 중 품질변화)

  • Jeong Jin-Woong;Kim Jong-Hoon;Kwon Ki-Hyun;Park Kee-Jai
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.316-321
    • /
    • 2006
  • Disinfection of electrolyzed water (EW) on strawberry by immersion washing and quality changes during storage at $5^{\circ}\C$ was compared with one immersed in chlorine water and not treated. Total count of strawberry washed with EW by immersion in 10 volumes of EW for 20 min was decreased to about 2 log cycle compared to the untreated And rate of microbial growth during storage was lower than ethers. Decaying ratio in strawberry treated with electrolyzed low-alkalinewater (EW-2) showed lower as of 10% level after 5 days of storage compared) to the untreated and the treated with chlorine water (CW). Hardness in the treatment of EW was not changed significantly until 3 days of storage, after then rather increased. Change in surface color of strawberries was observed; L value in the CW treated and the untreated increased whereas it decreased in the treatment of EW. And color difference(${\Delta}E$) during storage was observed the lowest in the untreated until 3 days of storage. The initial value of residual chlorine in the treatment of EW was at the level of $0.04{\sim}0.06ppm$, and $1{\sim}3$ days later showed almost the equal value to level of $0.02{\sim}0.03ppm$ in all treatments. Sensory characteristic during storage was preferable on strawberry washed with EW (EW-1 and EW-2) to the other treatments.

Effect of Various Composition of Nutrient Solution on Growth and Yield of Strawberry 'Maehyang' in Coir Substatrate Hydroponics (다양한 배양액 조성이 코이어 수경재배 딸기 '매향'의 생육과 수량에 미치는 영향)

  • Lee, Jeong Hun;Lee, Yong-Beom;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This study aimed to investigate the nutrient solution developed by based on nutrient-water absorption rate of strawberry 'Maehyang' by comparing growth and yield for 8 months with 5 kinds of nutrient solution with different ion composition. Strawberry plants were planted at elevated bed and supplied with five kinds of nutrient solutions (RDA), Yamazaki, PBG, University of Seoul (UOS) and NewUOS from one month onwards. Five types of nutrient solution were supplied to the strawberry plants associated with EC $1.0dS{\cdot}m^{-1}$, pH 6.0, $150{\sim}300mL{\cdot}plant^{-1}$ per day. At 60 days after planting, leaf width and leaf petiole of the strawberry plants showed significant differences among nutrient solution types and photosynthesis was higher in RDA and NewUOS nutrient solution and lower in PBG nutrient solution. The EC of the drainage on vegetative growth stage was $0.7{\sim}0.8dS{\cdot}m^{-1}$, which is lower than the supplied EC level, and to $1.0-1.2dS{\cdot}m^{-1}$, afterwards. The pH of the drainage was higher in Yamzaki solution as 6.2~6.8, while the pH of the UOS nutrient solution was lower in 5.1~5.2. Nitrate content was most absorbed in vegetative growth stage and after flower clusters development. The potassium uptake was highest at the NewUOS followed by UOS and Yamazaki nutrient solution. At six months after -planting fresh weight and dry weight of shoot and root were higher in UOS and NewUOS nutrient solution than other nutrient solutions, and the dry matter ratio was lower at 43.5% in Yamazaki nutrient solution and 30.6% in NewUOS nutrient solution than other solutions. Length, width, weight, and sugar content of the strawberries harvested from December to February were unaffected by treatment, but yield was higher in NewUOS nutrient solution due to increasing fruit number and average weight. From March to May, number of fruit was higher in Yamazaki nutrient solution. In conclusion, there was no difference in the growth of 'Maehyang' when 5 nutrient solutions were grown under hydroponics. But in order to improve the marketability, the NewUOS nutrient solution is appropriate to use from planting to February and it is suitable to use Yamazaki nutrient solution after March when temperature is high and the amount of fruit set per inflorescence.

Influence of Lower Leaf Defoliation Treatment on the Growth, Yield and Quality of Strawberries (하위 적엽처리가 딸기의 생육 및 생산성에 미치는 영향)

  • Lee, Gyu-Bin;Lee, Jung-Eun;Je, Byoung-Il;Lee, Yong-Jae;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.219-228
    • /
    • 2020
  • The purpose of this study was to investigate the effects of defoliation treatment on the growth and yield of strawberries. There was a remarkable growth in the above-ground part and root of untreated strawberry plants possibly due to higher amount of photosynthesis, while overall plant growth was suppressed as the level of defoliation treatment increased. In both the "Seolhyang" and "Maehyang" cultivars examined, defoliation treatment resulted in small fruits and a low number of fruits per plant. Notably, 50% defoliation significantly reduced the number of fruits per plant to 8.2, compared to 13.8 in untreated plants. Defoliation treatment also negatively influenced the fruit quality including color, sugar content, and solid-acid rate. However, no significant changes in fruit firmness was observed in either cultivar. Therefore, retaining enough leaves without defoliation treatment can be important to increasing fruit yield, producing high quality fruits and saving labor required for defoliation.

Growth and Rooting Rate of 'Maehyang' Strawberry as Affected by Irrigation Method on Cutting Propagation in Summer Season (하절기 '매향' 딸기의 삽목 번식 시 관수방법에 따른 생육 및 발근율)

  • Kim, Hyeon Min;Kim, Hye Min;Jeong, Hyeon Woo;Lee, Hye Ri;Jeong, Byoung Ryong;Kang, Nam Jun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.103-110
    • /
    • 2018
  • This study was conducted to investigate the optimum irrigation method for propagation of cutting strawberry ($Fragaria{\times}ananassa$ Duch. cv. Maehyang) plantlet in summer season. The cutting strawberry plantlets were planted in 24-cell tray ($60{\times}34{\times}10cm$) filled with commercial mixed medium (Tosilee) and placed in semi closed-type small plastic tunnel. Each semi closed-type small plastic tunnel was treated as follows; control (non-treatment), over head irrigation (twice a day), capillary mats irrigation (twice a day), or fog irrigation (30 minutes turn on and 10 minutes off from 8:00 to 18:00). The strawberry plantlets were rooted during 8 days in the semi closed-type small plastic tunnel, and then plastic film was removed. Growth parameters, such as plant height, root length, number of primary roots, petiole length, leaf length, leaf width, crown diameter, SPAD, leaf area, fresh and dry weights of the shoot and root, were measured at 61 days after cutting. Relative humidity in tunnel was high in the order by fog irrigation, over head irrigation, capillary mats, and the control as 72.5, 56.3, 45.8, and 29% on average, respectively. However, the air temperature was similar in all treatments. On the 4 and 8 days, the rooting rate of strawberry plantlet was significantly higher in the over head irrigation and fog irrigation treatments. Plant height, petiole length, crown diameter, and leaf area were highest in the over head irrigation and fog irrigation treatments. In addition, fresh and dry weights of shoot were greater in over head irrigation and fog irrigation treatments than the others. Dry weight of root was differed significantly heaviest in the fog irrigation treatment. However, root length, no. of primary roots, SPAD value, and fresh weight of root were not significantly different in all treatments. These results indicated that growth and rooting for propagation of cutting strawberry plantlet 'Maehyang' were best achievement in the over head irrigation and fog irrigation treatments.

Effect of LED Light Sources and Their Installation Method on the Growth of Strawberry Plants (LED 광원 및 설치조건에 따른 딸기의 생육 변화)

  • Lee, Ji Eun;Shin, Yong Seub;Cheung, Joung Do;Do, Han Woo;Kang, Young Hwa
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.106-112
    • /
    • 2015
  • The objective of this study was to examine the growth reaction of strawberry plants to the mixed red and blue LED sources and their installation method. The artificial light sources were : LED PAR(PPFD $2{\sim}4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$), LED BAR(PPFD $100{\sim}120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and incandescent(PPFD $2{\sim}4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) lamp. The lighting treatment was started at the first cluster flowering period as a night breaking lighting and was applied during 3 hours, between 22:00 and 01:00 every day. Plant height and leafstalk length were longer in plants treated with incandescent lamp, where as fresh and dry weight of shoot were heavier in LED PAR compared to incandescent lamp treatment. LED PAR treatment also resulted in the largest leaf area, chlorophyll content was increased by $0.36mg{\cdot}g^{-1}$ after 60 days from the starting of the artificial lighting. According to the experimental results application of 16W LED PAR lamps and W-type installation method can improve light environment in strawberry lighting culture.

Influence of Root Restriction Materials and Media on Soil Environment and Growth of Runner Plantlets during Propagation of 'Seolhyang' Strawberry (차근육묘를 위한 자재 및 배지 종류가 토양환경과 '설향' 딸기 자묘의 생장에 미치는 영향)

  • Park, Gab Soon;Chae, Soo Cheon;Oh, Chan Sik;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.511-517
    • /
    • 2015
  • This research was conducted to evaluate the influence of root restriction materials and media on the growth of runner plantlets of 'Seolhyang' strawberry in a nursery field. To achieve this, the influence of three kinds of root media on the growth of runner plantlets was monitored when polyethylene film was used as the root restriction material. In addition, the influence of various root restriction materials (RRS) such as transparent polyethylene film (PE), non-woven fabric (NF), perforated polyethylene film (PP), and root proofing sheet (RPS) on the changes in volumetric water content (VWC) and temperature of root media as well as growth of runner plantlet were investigated when expanded rice hull (ERH) was used as the root medium. In the comparison of root media, growth parameters such as leaf area and crown thickness at 20 d after fixation as well as crown thickness and fresh weights of root and above-ground tissue at 40 d after runner plantlet fixation were higher in the ERH treatment than in sandy loam and loamy sand. When the influence of RRS was compared, the VWC of ERH was 55% just after irrigation, but decreased to 26% at just before irrigation. Ranges of the VWC as influenced by irrigation cycle were 16 to 10% in the PP and less than 10% in the NF and RPS. The soil temperature in the PE treatment was around $1^{\circ}C$ lower than in NF, PP, and RPS. The differences between day and night temperatures were also smaller in the PE treatment rather than those in NF, PP, and RPS. The growths of runner plantlet 50 d after fixation showed that plant heights as well as fresh weights of root and above-ground tissue were higher in the PE treatment than in NF, PP, and RPS. NF and PP did not effectively restrict roots inside the medium and the roots of runner plantlets penetrated through the root restriction materials resulting in the formation of root system below the restriction materials. The above results indicate that ERH is more effective than sandy loam or loamy sand as root medium. PE rather than NF, PP, or RPS as root restriction material resulted in better growth of runner plantlets in propagation of 'Seolhyang' strawberry. The results of this research will be used for production of high quality runner plantlets in strawberry propagation.