• 제목/요약/키워드: Stratiform rain rate

검색결과 7건 처리시간 0.027초

TRMM 자료로 분석한 매든-줄리안 진동의 대류성 및 층운형 강수 특징 (Rainfall Characteristics of the Madden-Julian Oscillation from TRMM Precipitation Radar: Convective and Stratiform Rain)

  • 손준혁;서경환
    • 대기
    • /
    • 제20권3호
    • /
    • pp.333-341
    • /
    • 2010
  • The stratiform rain fraction is investigated in the tropical boreal winter Madden-Julian oscillation (MJO) and summer intraseasonal oscillation (ISO) using Tropical Rainfall Measuring Mission (TRMM) Precipitation Rader data for the 11-yr period from 1998 to 2008. Composite analysis shows that the MJO/ISO produces larger stratiform rain rate than convective rain rate for nearly all phases following the propagating MJO/ISO deep clouds, with the greatest stratiform rainfall amount when the MJO/ISO center is located over the central-eastern Indian Ocean and the western Pacific. The fraction of the intraseasonally filtered stratiform rainfall compared to total rainfall (i.e., convective plus stratiform rainfall) amounts to 53~56%, which is 13~16% larger than the stratiform rain fraction estimated for the same data on seasonal-to-annual time scales by Schumacher and Houze. This indicates that the MJO/ISO exhibits the organized rainfall process which is characterized by the shallow convection/heating at the incipient phase and the subsequent flare-up of strong deep convection, followed by the development of stratiform clouds at the upper troposphere.

Radiative Transfer Simulation of Microwave Brightness Temperature from Rain Rate

  • Yoo, Jung-Moon
    • 한국지구과학회지
    • /
    • 제23권1호
    • /
    • pp.59-71
    • /
    • 2002
  • Theoretical models of radiative transfer are developed to simulate the 85 GHz brightness temperature (T85) observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer as a function of rain rate. These simulations are performed separately over regions of the convective and stratiform rain. TRMM Precipitation Radar (PR) observations are utilized to construct vertical profiles of hydrometeors in the regions. For a given rain rate, the extinction in 85 GHz due to hydrometeors above the freezing level is found to be relatively weak in the convective regions compared to that in the stratiform. The hydrometeor profile above the freezing level responsible for the weak extinction in convective regions is inferred from theoretical considerations to contain two layers: 1) a mixed (or mixed-phase) layer of 2 km thickness with mixed-phase particles, liquid drops and graupel above the freezing level, and 2) a layer of graupel extending from the top of the mixed layer to the cloud top. Strong extinction in the stratiform regions is inferred to result from slowly-falling, low-density ice aggregates (snow) above the freezing level. These theoretical results are consistent with the T85 measured by TMI, and with the rain rate deduced from PR for the convective and stratiform rain regions. On the basis of this study, the accuracy of the rain rate sensed by TMI is inferred to depend critically on the specification of the convective or stratiform nature of the rain.

Retrieval of Rain-Rate Using the Advanced Microwave Sounding Unit(AMSU)

  • Byon, Jae-Young;Ahn, Myoung-Hwan;Sohn, Eun-Ha;Nam, Jae-Cheol
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.361-365
    • /
    • 2002
  • Rain-rate retrieval using the NOAA/AMSU (Advanced Microwave Sounding Unit) (Zaho et al., 2001) has been implemented at METRI/KMA since 2001. Here, we present the results of the AMSU derived rain-rate and validation result, especially for the rainfall associated with the tropical cyclone for 2001. For the validation, we use rain-rate derived from the ground based radar and/or rainfall observation from the rain gauge in Korea. We estimate the bias score, threat score, bias, RMSE and correlation coefficient for total of 16 tropical cyclone cases. Bias score shows around 1.3 and it increases with the increasing threshold value of rain-rate, while the threat score extends from 0.4 to 0.6 with the increasing threshold value of precipitation. The averaged rain-rate for at all 16 cases is 3.96mm/hr and 1.41mm/hr for the retrieved from AMSU and the ground observation, respectively. On the other hand, AMSU rain-rate shows a much better agreement with the ground based observation over inner part of tropical cyclone than over the outer part (Correlation coefficient for convective region is about 0.7, while it is only about 0.3 over the stratiform region). The larger discrepancy of tile correlation coefficient with the different part of the tropical cyclone is partly due to the time difference in between ice water path and surface rainfall. This results indicates that it might be better to develop the algorithm for different rain classes such as convective and stratiform.

  • PDF

Z-R Relationships for a Weather Radar in the Eastern Coast of Northeastern Brazil

  • Tenorio Ricardo Sarmento;Kwon Byung-Hyuk;Silva Moraes Marcia Cristina da
    • Journal of information and communication convergence engineering
    • /
    • 제4권1호
    • /
    • pp.41-45
    • /
    • 2006
  • A disdrometer has been used to determine Z-R relationships for the weather radar, which is unique coastal radar operating regularly in western tropical south Atlantic. Rainfall rates were divided into the stratiform rain and the convective rain on the basis of $10\;mm\;h^{-1}$. The Z-R relationship for the stratiform class was similar to the general one since the convective clouds did not developed and two classes of the rain rate were mixed.

Estimation of the Z-R Relation through the Disdrometer for the Coastal Region in the Northeast of Brazil

  • Tenorio, Ricardo Sarmento;Moraes, Marcia Cristina da Silva;Quintao, Demilson de Assis;Kwon, Byung-Hyuk;Yoon, Ill-Hee
    • 한국지구과학회지
    • /
    • 제24권1호
    • /
    • pp.30-35
    • /
    • 2003
  • The preliminary results of the study on the physics of rain using disdrometer data are shown for an area located on the northern coastal board of Macei${\acute{o}}$, Alagoas (9$^{\circ}$33'17.24' and 35$^{\circ}$46'54.84' W), at approximately 80 meters above the sea level. The data were obtained during January 2002 using a disdrometer RD-69 (Joss-Waldvogel). After definining the criteria for determining rain type (convective and stratiform), a set of Z-R pairs was analyzed for estimating the Z-R relation for each rain type. The results were quite similar to those for other regions of the globe. This preliminary analysis will be used to study the structure of rain with the meteorological radar as well as to permit a better understanding of the physics of tropical rain.

TRMM 위성의 강수레이더에서 관측된 동아시아 여름 강수의 특성 (Characteristics of Summer Rainfall over East Asia as Observed by TRMM PR)

  • 서은경
    • 한국지구과학회지
    • /
    • 제32권1호
    • /
    • pp.33-45
    • /
    • 2011
  • 이 연구는 TRMM(Tropical Rainfall Measuring Mission) 위성의 강수레이더인 PR(Precipitation Radar)의 5년간 (2002-2006) 6-8월 동안의 산출물을 분석하여 한반도 주변 지역과 동아시아의 아열대 및 열대 지역의 강우와 강우구름의 연직 구조 특성을 강우유형별로 분류하여 조사하였다. 한반도 주변 지역은 12.2%의 대류형 강우 비율로 다른 지역과 비교하여 약 6% 작았으며, 단위면적당의 강우 발생 빈도는 특히 열대지역의 50% 정도였다. 또한 한반도 주변 지역은 대류형에서 40% 더 강한 강우강도(10.4 mm/h)를 만들어내며, 층운형의 경우 세 지역 모두 비슷한 강우강도를 나타냈다. 평균적으로 강우강도는 운정고도와 비례하는 관계를 보였다. 레이더 반사도의 연직 구조를 통해 한반도 주변의 대류운은 연직적으로 매우 발달한 구름으로 더 높은 강우강도와 연관되어 있었다. 특히 열대지역의 대류형 강우구름들은 약 5 km의 고도 이하에서 지표에 접근함에 따라 수적들의 충돌병합에 의해 뚜렷한 레이더 반사도의 증가를 보였으며, 층운형 강우구름들은 더욱 뚜렷한 밝은 띠를 갖고 있었다. 한편 대류형에서 레이더 반사도의 첫 번째 경험직교함수 구조는 세 지역이 매우 비슷하지만, 두 번째 경험직교함수는 조금 다른 모습을 보였다. 한반도 주변 지역과 열대지역은 각각 상층과 하층에 큰 변동성을 보였다.

강수의 물리적 특성 이해를 위한 MRR 및 PASIVEL 우적계의 관측사례 분석 (Analysis of Observational Cases Measured by MRR and PARSIVEL Disdrometer for Understanding the Physical Characteristics of Precipitation)

  • 차주완;장기호;오성남;최영진;정진임;정재원;양하영;배진영;강선영
    • 대기
    • /
    • 제20권1호
    • /
    • pp.37-47
    • /
    • 2010
  • The methods measuring the precipitation drop size distribution(hereafter referred to as DSD) at Cloud Physics Observation System (CPOS) in Daegwallyeong are to use PARSIVEL (PARticle SIze and VELocity) disdrometer (hereafter referred to as PARSIVEL) and Micro Rain Radar (hereafter referred to as MRR). First of all, PARSIVEL and MRR give good correlation coefficients between their rain rates and those of rain gage: $R^2=0.93$ and 0.91, respectively. For the DSD, the rain rates are classified in 3 categories (Category 1: rr (Rain Rate) ${\leq}0.5\;mm\;h^{-1}$, Category 2: $0.5\;mm\;h^-1$ < rr < $4.0\;mm\;h^{-1}$, Category 3: rr ${\geq}4\;mm\;h^{-1}$). The shapes of PARSIVEL and MRR DSD are relatively most similar in category 2. In addition, we retrieve the vertical rain rate and liquid water content from MRR under melting layer, calculated by Cha et al's method, in Daegwallyeong ($37^{\circ}41{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m ASL, mountain area) and Haenam ($34^{\circ}33^{\prime}N$, $126^{\circ}34^{\prime}E$, 4.6 m ASL, coast area). The vertical variations of rain rate and liquid water content in Daegwallyeong are smaller than those in Haenam. We think that this different vertical rain rate characteristic for both sites is due to the vertical different cloud type (convective and stratiform cloud seem dominant at Haenam and Daegwallyeong, respectively). This suggests that the statistical precipitation DSD model, for the application of weather radar and numerical simulation of precipitation processes, be considered differently for the region, which will be performed in near future.