• Title/Summary/Keyword: Stratiform rain

Search Result 14, Processing Time 0.027 seconds

Rainfall Characteristics of the Madden-Julian Oscillation from TRMM Precipitation Radar: Convective and Stratiform Rain (TRMM 자료로 분석한 매든-줄리안 진동의 대류성 및 층운형 강수 특징)

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 2010
  • The stratiform rain fraction is investigated in the tropical boreal winter Madden-Julian oscillation (MJO) and summer intraseasonal oscillation (ISO) using Tropical Rainfall Measuring Mission (TRMM) Precipitation Rader data for the 11-yr period from 1998 to 2008. Composite analysis shows that the MJO/ISO produces larger stratiform rain rate than convective rain rate for nearly all phases following the propagating MJO/ISO deep clouds, with the greatest stratiform rainfall amount when the MJO/ISO center is located over the central-eastern Indian Ocean and the western Pacific. The fraction of the intraseasonally filtered stratiform rainfall compared to total rainfall (i.e., convective plus stratiform rainfall) amounts to 53~56%, which is 13~16% larger than the stratiform rain fraction estimated for the same data on seasonal-to-annual time scales by Schumacher and Houze. This indicates that the MJO/ISO exhibits the organized rainfall process which is characterized by the shallow convection/heating at the incipient phase and the subsequent flare-up of strong deep convection, followed by the development of stratiform clouds at the upper troposphere.

Radiative Transfer Simulation of Microwave Brightness Temperature from Rain Rate

  • Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 2002
  • Theoretical models of radiative transfer are developed to simulate the 85 GHz brightness temperature (T85) observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer as a function of rain rate. These simulations are performed separately over regions of the convective and stratiform rain. TRMM Precipitation Radar (PR) observations are utilized to construct vertical profiles of hydrometeors in the regions. For a given rain rate, the extinction in 85 GHz due to hydrometeors above the freezing level is found to be relatively weak in the convective regions compared to that in the stratiform. The hydrometeor profile above the freezing level responsible for the weak extinction in convective regions is inferred from theoretical considerations to contain two layers: 1) a mixed (or mixed-phase) layer of 2 km thickness with mixed-phase particles, liquid drops and graupel above the freezing level, and 2) a layer of graupel extending from the top of the mixed layer to the cloud top. Strong extinction in the stratiform regions is inferred to result from slowly-falling, low-density ice aggregates (snow) above the freezing level. These theoretical results are consistent with the T85 measured by TMI, and with the rain rate deduced from PR for the convective and stratiform rain regions. On the basis of this study, the accuracy of the rain rate sensed by TMI is inferred to depend critically on the specification of the convective or stratiform nature of the rain.

Case Study of the Precipitation System Occurred Around Cheongju Using Convective/Stratiform Radar Echo Classification Algorithm (레이더 반사도 유형분류 알고리즘을 이용한 청주 부근에서 관측된 강우시스템의 사례 분석)

  • Nam, Kyung-Yeub;Lee, Jeong-Seog;Nam, Jae-Cheol
    • Atmosphere
    • /
    • v.15 no.3
    • /
    • pp.155-165
    • /
    • 2005
  • The characteristics of six precipitation systems occurred around Cheongju in 2002 are analyzed after the convective/stratiform radar echo classification using radar reflectivity from the Meteorological Research Institute"s X-band Doppler weather radar. The Biggerstaff and Listemaa (2000) algorithm is applied for the classification and reveals a physical characteristics of the convective and stratiform rain diagnosed from the three-dimensional structure of the radar reflectivity. The area satisfying the vertical profile of radar reflectivity is well classified, while the area near the radar site and the topography-shielded area show a mis-classification. The seasonal characteristics of the precipitation system are also analyzed using the contoured frequency by altitude diagrams (CFADs). The heights of maximum reflectivity are 4 km and 5.5 km in spring and summer, respectively, and the vertical gradient of radar reflectivity from 1.5 km to the melting layer in spring is larger than in summer.

RAINFALL ESTIMATION OVER THE TAIWAN ISLAND FROM TRMM/TMI DATA DURING THE TYPHOON SEASON

  • Chen, W-J;Tsai, M-D;Wang, J-L;Liu, G-R;Hu, J-C;Li, C-C
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.930-933
    • /
    • 2006
  • A new algorithm for satellite microwave rainfall retrievals over the land of Taiwan using TMI (TRMM Microwave Imager) data on board TRMM (Tropical Rainfall Measuring Mission) satellite is described in this study. The scattering index method (Grody, 1991) was accepted to develop a rainfall estimation algorithm and the measurements from Automatic Rainfall and Meteorological Telemetry System (ARMTS) were employed to evaluate the satellite rainfall retrievals. Based on the standard products of 2A25 derived from TRMM/PR data, the rainfall areas over Taiwan were divided into convective rainfall area and stratiform rainfall areas with/without bright band. The results of rainfall estimation from the division of rain type are compared with those without the division of rain type. It is shown that the mean rainfall difference for the convective rain type is reduced from -6.2mm/hr to 1.7mm/hr and for the stratiform rain type with bright band is decreased from 10.7 mm/hr to 2.1mm/hr. But it seems not significant improvement for the stratiform rain type without bright band.

  • PDF

Classification of Convective/Stratiform Radar Echoes over a Summer Monsoon Front, and Their Optimal Use with TRMM PR Data

  • Oh, Hyun-Mi;Heo, Ki-Young;Ha, Kyung-Ja
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.465-474
    • /
    • 2009
  • Convective/stratiform radar echo classification schemes by Steiner et al. (1995) and Biggerstaff and Listemaa (2000) are examined on a monsoonal front during the summer monsoon-Changma period, which is organized as a cloud cluster with mesoscale convective complex. Target radar is S-band with wavelength of 10cm, spatial resolution of 1km, elevation angle interval of 0.5-1.0 degree, and minimum elevation angle of 0.19 degree at Jindo over the Korean Peninsula. For verification of rainfall amount retrieved from the echo classification, ground-based rain gauge observations (Automatic Weather Stations) are examined, converting the radar echo grid data to the station values using the inverse distance weighted method. Improvement from the echo classification is evaluated based on the correlation coefficient and the scattered diagram. Additionally, an optimal use method was designed to produce combined rainfalls from the radar echo and Tropical Rainfall Measuring Mission Precipitation Radar (TRMM/PR) data. Optimal values for the radar rain and TRMM/PR rain are inversely weighted according to the error variance statistics for each single station. It is noted how the rainfall distribution during the summer monsoon frontal system is improved from the classification of convective/stratiform echo and the use of the optimal use technique.

Estimation of the Z-R Relation through the Disdrometer for the Coastal Region in the Northeast of Brazil

  • Tenorio, Ricardo Sarmento;Moraes, Marcia Cristina da Silva;Quintao, Demilson de Assis;Kwon, Byung-Hyuk;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.30-35
    • /
    • 2003
  • The preliminary results of the study on the physics of rain using disdrometer data are shown for an area located on the northern coastal board of Macei${\acute{o}}$, Alagoas (9$^{\circ}$33'17.24' and 35$^{\circ}$46'54.84' W), at approximately 80 meters above the sea level. The data were obtained during January 2002 using a disdrometer RD-69 (Joss-Waldvogel). After definining the criteria for determining rain type (convective and stratiform), a set of Z-R pairs was analyzed for estimating the Z-R relation for each rain type. The results were quite similar to those for other regions of the globe. This preliminary analysis will be used to study the structure of rain with the meteorological radar as well as to permit a better understanding of the physics of tropical rain.

Z-R Relationships for a Weather Radar in the Eastern Coast of Northeastern Brazil

  • Tenorio Ricardo Sarmento;Kwon Byung-Hyuk;Silva Moraes Marcia Cristina da
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2006
  • A disdrometer has been used to determine Z-R relationships for the weather radar, which is unique coastal radar operating regularly in western tropical south Atlantic. Rainfall rates were divided into the stratiform rain and the convective rain on the basis of $10\;mm\;h^{-1}$. The Z-R relationship for the stratiform class was similar to the general one since the convective clouds did not developed and two classes of the rain rate were mixed.

Retrieval of Rain-Rate Using the Advanced Microwave Sounding Unit(AMSU)

  • Byon, Jae-Young;Ahn, Myoung-Hwan;Sohn, Eun-Ha;Nam, Jae-Cheol
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.361-365
    • /
    • 2002
  • Rain-rate retrieval using the NOAA/AMSU (Advanced Microwave Sounding Unit) (Zaho et al., 2001) has been implemented at METRI/KMA since 2001. Here, we present the results of the AMSU derived rain-rate and validation result, especially for the rainfall associated with the tropical cyclone for 2001. For the validation, we use rain-rate derived from the ground based radar and/or rainfall observation from the rain gauge in Korea. We estimate the bias score, threat score, bias, RMSE and correlation coefficient for total of 16 tropical cyclone cases. Bias score shows around 1.3 and it increases with the increasing threshold value of rain-rate, while the threat score extends from 0.4 to 0.6 with the increasing threshold value of precipitation. The averaged rain-rate for at all 16 cases is 3.96mm/hr and 1.41mm/hr for the retrieved from AMSU and the ground observation, respectively. On the other hand, AMSU rain-rate shows a much better agreement with the ground based observation over inner part of tropical cyclone than over the outer part (Correlation coefficient for convective region is about 0.7, while it is only about 0.3 over the stratiform region). The larger discrepancy of tile correlation coefficient with the different part of the tropical cyclone is partly due to the time difference in between ice water path and surface rainfall. This results indicates that it might be better to develop the algorithm for different rain classes such as convective and stratiform.

  • PDF

Characteristics of Summer Rainfall over East Asia as Observed by TRMM PR (TRMM 위성의 강수레이더에서 관측된 동아시아 여름 강수의 특성)

  • Seo, Eun-Kyoung
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.33-45
    • /
    • 2011
  • The characteristics and vertical structure of the rainfall are examined in terms of rain types using TRMM (Tropical Rainfall Measuring Mission) PR (Precipitation Radar) data during the JJA period of 2002-2006 over three different regions; midlatitude region around the Korean Peninsula (EA1), subtropical East Asia (EA2), and tropical East Asia (EA3). The convective rain fraction in the EA1 region is 12.2%, which is smaller by 6% than those in the EA2 and EA3 regions. EA1 shows less frequent convective rain events, which are about 0.5 times as many as those in EA3. EA1 produces the mean convective rain rate of 10.4 mm/h that is about 40% larger than EA2 and EA3 while all regions have similar mean stratiform rain rate. The relationships between storm height and rain rate indicate that the rain rate is proportional to the storm height. Based on the vertical structure of radar reflectivity, EA1 produces deeper and stronger convective clouds with higher rain rate compared to the other regions. In EA3, radar reflectivity increases distinctly toward the land surface at altitude below 5 km, indicating more dominant coalescence-collision processes than the other regions. Furthermore, the bright band of stratiform rain clouds in EA3 is very distinct. In convective rain clouds, the first EOFs of radar reflectivity profiles are similar among the three regions, while the second EOFs are slightly different. The larger variability exists at upper layers for EA1 while it exits at lower levels for EA3.