• 제목/요약/키워드: Stratified Injection

검색결과 88건 처리시간 0.029초

층상연료분사(경유/메탄올)를 이용한 디젤엔진의 NOx와 Soot 동시 저감에 관한 연구 (제1보 : 층상분사장치의 설계 및 층상분사 연소특성) (A Study on the Simultaneous Reduction of NOx and Soot with Diesel-Methanol Stratified Injection System in a Diesel Engine (Part I : Design of Stratified Injection System and Combustion Characteristics of Stratified Injection))

  • 강병무;김종률;이선봉;이태원;하종률
    • 한국분무공학회지
    • /
    • 제5권2호
    • /
    • pp.28-34
    • /
    • 2000
  • To reduce the soot and NOx simultaneously, a new system of stratified injection is developed. This system discharges stratified diesel-methanol in a D. I. Diesel Engine. Nozzle and delivery valve of conventional injection system were remodeled to inject diesel and methanol from one injector sequently. The quantity of diesel and methanol was controled precisely by micrometers mounted on the injection control lack. The real injection ratio of dual fuel was measured by volumetric ratio. We could confirm the capabilities that soot and NOx simultaneously were reduced by diesel-methanol stratified injection from the results of in-cylinder pressure data obtained from combustion experiment by stratified injection, heat release rate and mass fraction bumed.

  • PDF

층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구 (A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine)

  • 강병무;안현찬;이태원;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

연소실 직접분사식 성층급기 가솔린기관의 구동안정성에 관한 연구 -열방출율과 도시평균유효압력 변동에 미치는 연료분사압력과 부하변동의 영향- (A Study on Driving Stability of In-cylinder Direct Injection Stratified Charge Gasoline Engine - Effects on HR rate and $COV_{imep}$ of Fuel Injection Pressure and Load Variations -)

  • 이상만;이근오
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.3-10
    • /
    • 1998
  • In general, the stratified charge for direct injection gasoline engine should be introduced to achieve ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, a reflector was adapted on cylinder head. An installation of the reflector in front of the injector nozzle leads the mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally ich to ignite while the lean mixture is wholly introduced into the combustion chamber. In this paper, the characteristics of combustion is analyzed with the variations of injection pressure and load in a stratified-charge direct injection single cylinder gasoline engine.

  • PDF

연소실 직접분사식 성층급기 가솔린기관 개발에 관한 연구 - 연료분사압력과 부하변동에 따른 연소특성 해석 - (A Study on Stratified Charge GDI Engine Development - Combustion Analysis according to the Variations of Injection Pressure and Load -)

  • 이상만;정영식;채재우
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1317-1324
    • /
    • 1998
  • In general, DI gasoline engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance and lower emissions due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, some kinds of methodologies have been adapted in various papers. In this study, a reflector was adapted around the injector nozzle to apply the concept of stratified charge combustion which leads the air-fuel mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally rich to ignite while the lean mixture is wholly introduced into the combustion chamber. The characteristics of combustion is analyzed with the variations of fuel injection pressure and load in a stratified -charge direct injection single cylinder gasoline engine. The obtained results are summarized as follows ; 1. The MBT spark timing approached to TDC with the increase of load on account of the increase of evaporation energy, but has little relation with fuel injection pressure. 2. The stratification effects are apparent with the increase of injection pressure. It is considered by the development of secondary diffusive combustion and the increase of heat release of same region, but proceed rapidly than diesel engine. Especially, in the case of high pressure injection (l70bar) and high load (3.0kgf m), the diffusive combustion parts are developed excessively and results in the decrease of peak pressure than in the case of middle load. 3. The index of engine stability, COVimep value, is drastically decreased with the increase of load. 4. To get better performance of DI gasoline engine development, staged optimizaion must be needed such as injection pressure, reflector, intake swirl, injection timing, chamber shape, ignition system and so on. In this study, the I50bar injection pressure is appeared as the optimum.

층상연료분사(경유/메탄올)를 이용한 디젤엔진의 NOx와 Soot 동시 저감에 관한 연구 (제2보 : 층상분사 연소특성 및 배기 특성) (A Study on the Simultaneous Reduction of NOx and Soot with Diesel-Methanol Stratified Injection System in a Diesel Engine (Part II : Combustion and Exhaust Characteristics of Stratified Injection))

  • 강병무;이태원;정성식;하종률
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.7-13
    • /
    • 2002
  • This paper is study on simultaneous reduction of NOx and soot for direct injection diesel engine using high and low cetane fuels. The stratified injection system was applied for diesel engine to use high and low cetane fuel. In this study, diesel fuel was used as high cetane fuels, methanol was used as low cetane fuels. Some parts of the injection system, ie. Nozzle holder. delivery vale, was remodeled to inject dual fuel sequentially from one injector. The leak injection quantity ratio of dual fuel was certificated by volumetric ratio at injection quantity experiment. According as concentration of low cetane fuel was varied, combustion experiment was performed using Toroidal and Complex chamber. Also, exhaust gas and fuel consumption were measured at the same time. Simultaneous reduction of NOx and soot was achieved at complex chamber regardless of concentration of low cetane fuel. However, according as concentration of low cetane fuel was increased, THC and CO was increased.

  • PDF

정적 용기내의 직접분사식 스파크 점화 성층 연소에 관한 연구 (A Study on Direct Injection Stratified Charge Combustion with Spark Ignition in Constant Volume Bomb)

  • 홍명석;김경석
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.30-40
    • /
    • 1994
  • The direct-injection stratified-charge engine has the advantages of higher thermal efficiency and less CO and $NO_x$ emission levels than conventional spark ignition engines. However, its actual utilization is prevented by high unburned hydrocarbon emission levels during light-load operations. In this paper, fundamental studies were carried out using a pancake type constant volume bomb. The effects of intensification of local premixing by tangential and radial fuel injection were examined experimentally. Unburned hydrocarbon emission levels with radial fuel injection were shown to be lower than those of tangential fuel injection cases. The stratification and mixing process of fuel jet and combustion process were observed by schlieren photography.

  • PDF

이종연료 층상분사를 적용한 디젤엔진에서 광 계측을 이용한 연소해석 (An Combustion Diagnosis Using Optical Measurement in D. I Diesel Engine with Dual Fuel Stratified Injection System)

  • 안현찬;강병무;염정국;정성식;하종률
    • 한국분무공학회지
    • /
    • 제7권3호
    • /
    • pp.31-37
    • /
    • 2002
  • In previous study, diesel-methanol stratified injection system is manufactured and applied to a D.I. diesel engine in order to realize combustion improvement using methanol, which is oxygenated fuel with large latent heat. We know that NOx and soot is reduced by stratified injection of diesel fuel-methanol. Therefore, in the present study, combustion diagnosis using optical measurement is tried to make clear effect of methanol on simultaneous reduction of NOx and soot. Two-color method is used to measure flame temperature and KL value, which is approximately proportional to the soot consentration along the optical path. Laser induced scattering method was used to measure distribution of soot at two dimensional area. Also, it is compared exhaust characteristics of NOx and soot with results of optical measurement.

  • PDF

균일 혼합기를 이용한 이론 공연비 직접분사 가솔린 엔진 개발에 관한 실험적 연구 (A Study on the Development of Stoichiometric Direct Injection Gasoline Engine by Homogeneous Charge)

  • 이내현;유철호;최규훈
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.32-42
    • /
    • 1998
  • Lean burn gasoline engine is recognized as a promising way to meet better fuel economy. Lean burn engine is classified into port injection and direct injection(DI), DI is more active technique for improving fuel economy with ultra-lean operation, Nowadays, port injected lean burn engine has been produced by many Japan maker. Also, DI engine is also possible for production owing to improvement in control technique of spray, flow air fuel ratio. DI engine uses either homogeneous stoichiometric mixture or stratified mixture by controlling injection timing to be early or late respectively. HM(homogeneous mixture) is worse than SM(stratified mixture) in view of ultra-lean operation in partical load and Nox reducion by using EGR control. But, HM has advanteges in cold starting and emission reduction during transient operation, This paper describes experimental variables and bench test results of HM GDI engine.

  • PDF

직접분사 성층연소방식에서 수소 첨가에 의한 미연 탄화수소의 저감 (The Reduction of Unburned Hydrocarbons on the Direct-Injection Stratified-Charge Combustion Method by Hydrogen Addition)

  • 홍명석;김경석
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.46-57
    • /
    • 1996
  • The direct injection stratified charge(DISC) engine enhances the fuel tolerance and the antiknock tendency. This enhanc3d antiknock tendency allows use of a higher compression ratio which results in higher thermal efficiency. But its actual utilization is prevented by high emission combustion time and wall quenching will be the main causes of increasing unburned hydrocarbons in DISC system. In order to solve this problem, small aount of hydrogen was added to the charging air or injected fuel. The effects of hydrogen addition were examined experimentally by radial fuel injection using a pancake-type constant volume bomb. In case of the hydrogen addition to the charge of air, the combustion the amount of hydrogen. In case of the hydrogen addition to the fuel, the combustion pressure was significantly increased.

  • PDF

직접 분사식 가솔린 엔진을 이용한 성층 연소 특성에 관한 실험적 연구 (An Experimental Study on the Stratified Combustion Characteristics in a Direction Injection Gasoline Engine)

  • 이창희;이기형;임경빈;김봉규
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.121-126
    • /
    • 2006
  • A gasoline-fueled stratified charge compression ignition (SCCI) engine with both direct fuel injection and intake temperature and compression ratio was examined. The fuel was injected directly by using the high temperature resulting from heating intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The effect of mixture stratification and the effect of fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.