• Title/Summary/Keyword: Stratification effect

Search Result 268, Processing Time 0.035 seconds

Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes (지하 열저장 공동의 종횡비와 저장용량에 따른 열성층화 및 열손실)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.308-318
    • /
    • 2013
  • Thermal stratification in heat stores is essential to improve the efficiency of energy storage systems and deliver more useful energy on demand. It is generally well known that the degree of thermal stratification in heat stores varies depending on the aspect ratio (the height-to-width ratio) and size of the stores. The present study aims to investigate the effect of the aspect ratio and storage volume of rock caverns for storing hot water on thermal stratification in the caverns and heat loss to the surroundings. Heat transfer simulations using a computational fluid dynamics code, FLUENT were performed at different aspect ratios and storage volumes of rock caverns. The variation of thermal stratification with respect to time was examined using an index to quantify the degree of stratification, and the heat loss to the surroundings was evaluated. The results of the numerical simulations demonstrated that the thermal stratification in rock caverns was improved by increasing the aspect ratio, but this effect was not remarkable beyond an aspect ratio of 3-4. When the storage volume of rock caverns was large, a higher thermal stratification was maintained for a relatively longer time compared to caverns with a small storage volume, but the difference in thermal stratification between the two cases tended to decrease as the aspect ratio became larger. In addition, the numerical results showed that the heat loss to the surrounding rock tended to increase with an increase in aspect ratio because the surface area of rock caverns increased as the aspect ratio became larger. The total heat loss from multiple small caverns with a reduced storage volume per cavern was larger compared to a single cavern with the same total storage volume as that of the multiple caverns.

A Study on the Numerical Model of Current of Strafication Considering the Topographic Heat Accumulation Effect in the Coastal Area (해역에서의 지형성 저열효과를 고려한 성층유동 수치모델에 관한 연구)

  • Yoon, Jung-Sung;Kim, Myoung-Kyu;Han, Dong-Jing;Kim, Ga-Ya
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.61-68
    • /
    • 2008
  • In Jinhae-Masan bay, a typical semi-dosed bay in Korea, the water quality is severely deteriorated because of the dosed topographic character and the inflow of nutrients from the land. There have been attempts to apply a water quality model dealing with the entrophication phenomenon and the oxygen-deficient mass in the bay in summer, but there have been few examples of models that have considered the phenomenon of stratification in the proper order, and then it is performed the model of water quality. Therefore, this study collected and analyzed the pre-observed water temperature data from Jinhae-Masan bay in summer and then constructed a density model using the topographic heat accumulation effect and inflow from the river to examine the temperature stratification. The simulation results show that this model could demonstrate the temperature stratification in the Jinhae-Masan bay very well.

Effect of the Fuel Stratification on the Operating Range for a DME HCCI Engine based on Numerical Analysis (농도성충화가 DME HCCI 엔진의 운전 영역 확장에 미치는 영향에 관한 수치해석 연구)

  • Kwon, O-Seok;Jeong, Dong-Won;Back, Young-Soon;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.256-263
    • /
    • 2009
  • The operating range of HCCI engine is narrow due to excessive rate of pressure rise on high load. The fuel stratification is proposed to solve the problem. The purpose of this study is to gain a better understanding of the effects of fuel stratification on reducing the pressure-rise rate at high load in HCCI combustion and to investigate that the operating range is expanded for fuel stratification in the preceding condition of initial temperature and equivalence ratios. The engine is fueled with Di-Methyl Ether (DME) which has unique 2-stage heat release. The computations were conducted using SENKIN application of the CHEMKINll kinetics rate code. Calculation result shows that proper fuel stratification prolongs combustion duration and reduce pressure rise rate.

Numerical Analysis for Booster Effect in DME HCCI Engine with Fuel Stratification (연료의 불균질성을 갖는 DME HCCI엔진에서 과급의 효과에 관한 수치해석)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.19-25
    • /
    • 2010
  • The purpose of this study is to gain a better understanding of the effects of fuel stratification on reducing the pressure-rise rate at high load in HCCI combustion. It was found that fuel stratification offers good potential to achieve a staged combustion event and reduced pressure-rise rates. The engine is fueled with Di-Methyl Ether (DME) which has unique 2-stage heat release. Numerical analysis is conducted with single and multi-zones model and detailed chemical reaction scheme is done by chemkin and senkin. Calculation result shows that proper fuel stratification prolongs combustion duration and reduce pressure rise rate. Besides IMEP, combustion efficiency and indicated thermal efficiency keep constant. However, too wide fuel stratification increases pressure rise rate and CO and NOx emissions in exhaust gas.

Stratification Variation of Summer and Winter in the South Sea of Korea (한국 남해의 여름과 겨울철 성층 변동)

  • Lee, Chung-Il;Koo, Do-Hyung;Yun, Jong-Hwui;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.119-125
    • /
    • 2007
  • In order to illustrate the variation cf stratification and to know the effects of the temperature and the salinity on the stratification in the South Sea of Korea, the stratification parameter defined as potential energy anomaly (PEA, $V(J/m^3)$) introduced by Simpson and Hunter (1974) was used. The oceanographic data were obtained in August 1999 and February 2000 by National Fisheries Research and Development Institute (NFRDI). V in August is generally high in offshore and low in near shore. However, in February, V in the near shore is higher than that cf the offshore due to the vertical temperature gradient between surface and bottom layer caused by the expansion of South Korean Coastal Waters (SKCW). In summer, the increase of the atmospheric heating acts on the stratification as the buoyancy forcing. In most cases, the effect cf the temperature on the stratification is stronger than that of the salinity. The temperature effect is predominantly due to the extent of the intrusion of Tsushima Warm Current into the study area. However, at stations where V is high the effect of the salinity is also significant. In winter, V is very low due to the decrease cf the buoyancy forcing, but some stations show the relatively high V due to the expansion of SKCW and salinity in winter unlike that in summer makes the stratification weak.

  • PDF

Seed Germination Response to Temperature, Cold Stratification Period, and Gibberellin Treatment in Spiraea fritschiana

  • Kim, Hyun Jin;Lee, Ki Cheol;Kim, Hyun Jin;Kim, Yoon Jin
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.557-563
    • /
    • 2016
  • To improve the germination of Spiraea fritschiana seeds for mass propagation, we evaluated the effect of a range of temperatures, cold stratification periods, and gibberellic acid ($GA_3$) treatments on three germination characteristics. Final germination percentage (FGP) increased as the temperature for seed germination increased, up to $30^{\circ}C$, while the mean germination time (MGT) and the mean number of days to 30% germination ($T_{30}$) decreased when seeds were germinated at $25-30^{\circ}C$. The optimum germination temperature of S. fritschiana seeds is approximately $30^{\circ}C$ considering FGP, MGT, and $T_{30}$ together. FGP increased with the duration of cold stratification up to a period of 6 weeks, but declined after 8 weeks of cold stratification, as prolonged cold stratification can induce dormancy with a resultant decline in germination. Pretreatment with 6-8 weeks of cold stratification or soaking seeds in distilled water or $500mg{\cdot}L^{-1}$ $GA_3$ for 24 h accelerated and increased the germination of S. fritschiana seeds, regardless of temperature. However, further study might be required to evaluate the effect of $GA_3$ concentrations lower than $500mg{\cdot}L^{-1}$ on the promotion of germination in S. fritschiana seeds.

Numerical Study on the Thermal Stratification Behavior in Underground Rock Cavern for Thermal Energy Storage (TES) (열에너지 저장을 위한 지하 암반공동 내 열성층화 거동에 대한 수치해석적 연구)

  • Park, Do-Hyun;Kim, Hyung-Mok;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.188-195
    • /
    • 2012
  • Using a computational fluid dynamics (CFD) code, FLUENT, the present study investigated the thermal stratification behavior of Lyckebo storage in Sweden, which is the very first large-scale rock cavern for underground thermal energy storage. Heat transfer analysis was carried out for numerical cases with different temperatures of the surrounding rock mass in order to examine the effect of rock mass heating due to periodic storage and production of thermal energy on thermal stratification and heat loss. The change of thermal stratification with respect to time was quantitatively examined based on an index of the degree of stratification. The results of numerical simulation showed that in the early operational stage where the surrounding rock mass was less heated, the stratification of stored thermal energy was rapidly degraded over time, but the degradation and heat loss tended to reduce as the surrounding rock mass was heated during a long period of operation.

A COUPLED CFD-FEM ANALYSIS ON THE SAFETY INJECTION PIPING SUBJECTED TO THERMAL STRATIFICATION

  • Kim, Sun-Hye;Choi, Jae-Boong;Park, Jung-Soon;Choi, Young-Hwan;Lee, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.237-248
    • /
    • 2013
  • Thermal stratification has continuously caused several piping failures in nuclear power plants since the early 1980s. However, this critical thermal effect was not considered when the old nuclear power plants were designed. Therefore, it is urgent to evaluate this unexpected thermal effect on the structural integrity of piping systems. In this paper, the thermal effects of stratified flow in two different safety injection piping systems were investigated by using a coupled CFD-FE method. Since stratified flow is generally generated by turbulent penetration and/or valve leakage, thermal stress analyses as well as CFD analyses were carried out considering these two primary causes. Numerical results show that the most critical factor governing thermal stratification is valve leakage and that temperature distribution significantly changes according to the leakage path. In particular, in-leakage has a high possibility of causing considerable structural problems in RCS piping.

Study on Stratification according to Diffuser Shape of the Thermal Storage Tank in Integrated Energy (집단에너지 공급 축열조의 디퓨져 형태별 성층화 연구)

  • Jang, Cheol-Yong;Cho, Soo;Choi, Seok-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.300-303
    • /
    • 2008
  • The stratification effect was investigated with four different types of diffuser shape in a thermal storage tank. For this study, experimental facility was constructed, which was composed of experimental thermal storage tank, hot and cold water storage tanks, boiler, chiller, data acquisition system, etc.. Visualization and lab scale experimental result showed that radial curved type diffuser was the highest degree of stratification among the four diffuser shapes.

  • PDF

A Numerical Study of Formation of Unsteady Vortex behind a Sphere in Stratified Flow (층상류 속에 있는 구 후류의 비정상 와류 형성에 관한 수치 해석)

  • Lee, Seung-Su;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.715-720
    • /
    • 2000
  • Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered and linear stratification of density is assumed under Boussinesq approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.

  • PDF