• Title/Summary/Keyword: Strand break

Search Result 62, Processing Time 0.023 seconds

Screw-Propelled Robot for Detecting Grease Pipe (그리스 충전 덕트 내 탐상을 위한 스크류 추진 로봇)

  • Kim, HoJoong;Kim, Dongseon;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.178-182
    • /
    • 2022
  • Post-tension duct in nuclear reactor containment building is filled with grease to prevent steel strand from corroding. If grease leaks by break of duct, steel strand will corrode and cause problem in building safety. Therefore, grease leak should be checked preventatively. But currently used method is inefficient, since it has to remove grease and strand to check. And other methods for checking post-tension dust are not well-researched. In this paper, we develop screw-propelled robot that can move in grease and detect grease duct directly. Also, we make the test environment that is similar to real post-tension duct of containment building and test robot in that environment to verify that our robot is feasible in the post-tension duct. The robot can move forward and backward in grease duct by twin screw mechanism and has mount for sensors to detect grease leakage and strand corrosion.

Radiation-induced DNA strand breaks in EL4 cells and mouse spleen lymphocytes (방사선에 의한 EL4 마우스 백혈병세포 및 정상 마우스 비장 임파구 DNA strand breaks의 측정)

  • Kim, Sung-ho;Kim, Tae-hwan;Chung, In-yong;Yoo, Seong-yul;Cho, Chul-koo;Chin, Soo-yil
    • Korean Journal of Veterinary Research
    • /
    • v.31 no.3
    • /
    • pp.329-335
    • /
    • 1991
  • The filter elution technique was used to assay $^{60}Co$ $\gamma$ ray-induced DNA strand breaks(SB) in EL4 mouse leukemia cell and mouse spleen lymphocyte. The lymphocytes were stimulated with lipopolysaccharide (LPS, $20{\mu}g/ml$) to label $[^3H]$ thymidine. EL4 cells and lymphocytes in suspension were exposed at $0^{\circ}C$ to 0Gy, 1Gy, 5Gy, 10Gy or l5Gy for DNA single strand breaks(SSB) assay and 0Gy, 25Gy, 50Gy, 75Gy or 100Gy for DNA double strand breaks(DSB) assay of $^{60}Co$ radiation and elution procedure was performed at pH12.1 and 9.6. The number of DNA strand breaks increased with increasing doses of r rays. The strand scission factor(SSF) was estimated in each experiment (eluted volume 21ml). The slope of SSB EL4 cells was $0.01301{\pm}0.00096Gy^{-1}$ (n=5), the slope of SSB for lymphocytes was $0.01097{\pm}0.00091Gy^{-1}$ (n=5) and the slope of DSB for lymphocytes was $0.001707{\pm}0.0000573Gy^{-1}$ (n=5). Thus EL4 cells were more sensitive to induction of DNA SSB by ionizing radiation than lymphocytes (p<0.005). The ratio of slope of dose-response relationship (SSF versus dose) of lymphocytes DNA SSB as compared with the slope of DNA DSB was 6.4.

  • PDF

Genetic Variation in a DNA Double Strand Break Repair Gene in Saudi Population: A Comparative Study with Worldwide Ethnic Groups

  • Areeshi, Mohammed Yahya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7091-7094
    • /
    • 2013
  • DNA repair capacity is crucial in maintaining cellular functions and homeostasis. However, it can be altered based on DNA sequence variations in DNA repair genes and this may lead to the development of many diseases including malignancies. Identification of genetic polymorphisms responsible for reduced DNA repair capacity is necessary for better prevention. Homologous recombination (HR), a major double strand break repair pathway, plays a critical role in maintaining the genome stability. The present study was performed to determine the frequency of the HR gene XRCC3 Exon 7 (C18067T, rs861539) polymorphisms in Saudi Arabian population in comparison with epidemiological studies by "MEDLINE" search to equate with global populations. The variant allelic (T) frequency of XRCC3 (C>T) was found to be 39%. Our results suggest that frequency of XRCC3 (C>T) DNA repair gene exhibits distinctive patterns compared with the Saudi Arabian population and this might be attributed to ethnic variation. The present findings may help in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

Ycs4 is Required for Efficient Double-Strand Break Formation and Homologous Recombination During Meiosis

  • Hong, Soogil;Choi, Eui-Hwan;Kim, Keun Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1026-1035
    • /
    • 2015
  • Condensin is not only responsible for chromosome condensation, but is also involved in double-strand break (DSB) processing in the cell cycle. During meiosis, the condensin complex serves as a component of the meiotic chromosome axis, and mediates both proper assembly of the synaptonemal complex and DSB repair, in order to ensure proper homologous chromosome segregation. Here, we used the budding yeast Saccharomyces cerevisiae to show that condensin participates in a variety of chromosome organization processes and exhibits crucial molecular functions that contribute to meiotic recombination during meiotic prophase I. We demonstrate that Ycs4 is required for efficient DSB formation and establishing homolog bias at the early stage of meiotic prophase I, which allows efficient formation of interhomolog recombination products. In the Ycs4 meiosis-specific allele (ycs4S), interhomolog products were formed at substantial levels, but with the same reduction in crossovers and noncrossovers. We further show that, in prophase chromosomal events, ycs4S relieved the defects in the progression of recombination interactions induced as a result of the absence of Rec8. These results suggest that condensin is a crucial coordinator of the recombination process and chromosome organization during meiosis.

Effects of 60-Hz Time-Varying Electric Fields on DNA Damage and Cell Viability Support Negligible Genotoxicity of the Electric Fields

  • Yoon, Yeo Jun;Li, Gen;Kim, Gyoo Cheon;Lee, Hae June;Song, Kiwon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.134-141
    • /
    • 2015
  • The effect of a 60 Hz time-varying electric field was studied using a facing-electrode device (FED) and a coplanar-electrode device (CED) for further investigation of the genotoxicity of 60 Hz time-varying magnetic field (MF) from preceding research. Neither a single 30-minute exposure to the CED or to the FED had any obvious biological effects such as DNA double strand break (DSB) and apoptosis in cancerous SCC25, and HeLa cells, normal primary fibroblast IMR90 cells, while exposures of 60 Hz time-varying MF led to DNA damage with induced electric fields much smaller than those used in this experiment. Nor did repetitive exposures of three days or a continuous exposure of up to 144 hours with the CED induce any DNA damage or apoptosis in either HeLa or IMR90 cells. These results imply that the solitary electric field produced by time-varying MF is not a major cause of DSBs or apoptosis in cancer or normal cells.

Effect of Low-Energy Electron Irradiation on DNA Damage by Cu2+ Ion

  • Noh, Hyung-Ah;Park, Yeunsoo;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • Background: The combined effect of the low energy electron (LEE) irradiation and $Cu^{2+}$ ion on DNA damage was investigated. Materials and Methods: Lyophilized pBR322 plasmid DNA films with various concentrations (1-15 mM) of $Cu^{2+}$ ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Results and Discussion: Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. Conclusion: The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

Identification of Protein Phosphatase 4 Inhibitory Protein That Plays an Indispensable Role in DNA Damage Response

  • Park, Jaehong;Lee, Jihye;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.546-556
    • /
    • 2019
  • Protein phosphatase 4 (PP4) is a crucial protein complex that plays an important role in DNA damage response (DDR), including DNA repair, cell cycle arrest and apoptosis. Despite the significance of PP4, the mechanism by which PP4 is regulated remains to be elucidated. Here, we identified a novel PP4 inhibitor, protein phosphatase 4 inhibitory protein (PP4IP) and elucidated its cellular functions. PP4IP-knockout cells were generated using the CRISPR/Cas9 system, and the phosphorylation status of PP4 substrates (H2AX, KAP1, and RPA2) was analyzed. Then we investigated that how PP4IP affects the cellular functions of PP4 by immunoprecipitation, immunofluorescence, and DNA double-strand break (DSB) repair assays. PP4IP interacts with PP4 complex, which is affected by DNA damage and cell cycle progression and decreases the dephosphorylational activity of PP4. Both overexpression and depletion of PP4IP impairs DSB repairs and sensitizes cells to genotoxic stress, suggesting timely inhibition of PP4 to be indispensable for cells in responding to DNA damage. Our results identify a novel inhibitor of PP4 that inhibits PP4-mediated cellular functions and establish the physiological importance of this regulation. In addition, PP4IP might be developed as potential therapeutic reagents for targeting tumors particularly with high level of PP4C expression.

Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis

  • Cho, Hong-Rae;Kong, Yoon-Ju;Hong, Soo-Gil;Kim, Keun Pil
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.550-556
    • /
    • 2016
  • During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the $hop2{\Delta}$ or $sae3{\Delta}$ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation.

Effects of Aronia melanocarpa and Korean Red Ginseng Ethanol Extracts Combination on Cytotoxicity induced by Fludarabine, a DNA Chain Terminating Anti-Cancer Drug (DNA 사슬 종결형 항암제인 플루다라빈에 의해 유도된 세포독성에 대한 아로니아-홍삼 에탄올 혼합 추출물의 효과)

  • Kim, Min Seob;Chung, You Heon;Oh, Hong Geun;Park, Jong Kun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.673-680
    • /
    • 2017
  • Fludarabine, a chain terminating anti-cancer drug, is a purine analogue that causes DNA strand breaks in normal cells. In this study, we determined if A. melanocarpa and Korean red ginseng extract mixture reduce cytotoxicity of fludarabine. Treatment of HaCaT cells with $10{\mu}M$ of fludarabine for 24 hours decreased cell viability and increased DNA strand breaks. Treatment of A. melanocarpa and Korean red ginseng extract mixture for 24 hours increased cell viability as compared with single extract treatment. The protective effect of these extracts on cell activity increased in a concentration-dependent manner. DNA strand breaks induced by fludarabine decreased as concentration of extract mixture increased. p-H2AX level, a marker of DNA strand breakage, decreased depending on the concentration of extract mixture. The effect of mixed extract of A. melanocarpa and Korean red ginseng on DNA damage is due to the anti-oxidative effect of A. melanocarpa and signal transmission through glucocorticoid receptor upon binding of saponin of Korean red ginseng.

Hed1 Promotes Meiotic Crossover Formation in Saccharomyces cerevisiae

  • Kong, Yoon-Ju;Joo, Jeong-Hwan;Kim, Keun Pil;Hong, Soogil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.405-411
    • /
    • 2017
  • Homologous recombination occurs between homologous chromosomes and is significantly involved in programmed double-strand break (DSB) repair. Activation of two recombinases, Rad51 and Dmc1, is essential for an interhomolog bias during meiosis. Rad51 participates in both mitotic and meiotic recombination, and its strand exchange activity is regulated by an inhibitory factor during meiosis. Thus, activities of Rad51 and Dmc1 are coordinated to promote homolog bias. It has been reported that Hed1, a meiosis-specific protein in budding yeast, regulates Rad51-dependent recombination activity. Here, we investigated the role of Hed1 in meiotic recombination by ectopic expression of the protein after pre-meiotic replication in Saccharomyces cerevisiae. DNA physical analysis revealed that the overexpression of Hed1 delays the DSB-to-joint molecule (JM) transition and promotes interhomolog JM formation. The study indicates a possible role of Hed1 in controlling the strand exchange activity of Rad51 and, eventually, meiotic crossover formation.