• 제목/요약/키워드: Strain-control

검색결과 2,275건 처리시간 0.036초

절대위치 엔코더의 위치제어 알고리즘을 이용한 의지 장치의 보행 상태 추론 (Estimate of walking state of the knee disarticulation prosthesis using position control algorithm of absolute encoder)

  • 송해중;박재열;심재홍
    • 재활복지공학회논문지
    • /
    • 제7권2호
    • /
    • pp.1-5
    • /
    • 2013
  • 본 논문에서는 슬관절 의지 장치의 무릎 각도 제어를 통해 보행 상태를 추론하는 방법을 제안한다. 슬관절 의지의 제어에서 절대위치 엔코더를 이용해 무릎의 각도를 측정하고, 스트레인 게이지를 통해 발바닥의 부하를 측정하여 현재 보행 상태를 추론할 수 있다. 본 논문에서는 2개의 센서를 사용하여 현재 보행 상태를 4가지 상태로 추론하는 방법을 제안하였으며, 실험을 통하여 제안된 방법의 유효성을 보였다.

  • PDF

체적제어에 의한 적층 복합재 구멍의 형상 최적화 (Shape Optimization of Cutouts in a Laminated Composite Plate Using Volume Control)

  • 한석영;마영준
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1337-1343
    • /
    • 2004
  • Shape optimization was performed to obtain a precise shape of cutouts including the internal shape of cutouts in a laminated composite plate by three dimensional modeling using solid element. Volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. It makes Tsai-Hill failure index at each element uniform in laminated composites under the predetermined volume a designer requires. Shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study; (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminate composite, (2) The optimal shapes of the various load conditions and cutouts were obtained, (3) The maximum Tsai-Hill failure indices of the optimal shapes were remarkably reduced comparing with those of the initial shapes.

지능형 압력 변환기 개발 (Development of A smart pressure transducer)

  • 박찬원;민남기
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.941-947
    • /
    • 1999
  • As pressure transducers are employed in many fields such as production facilities, test facilities vehicles and industrial machinery, there is an increasing need for high precision measurement of pressure without any calibration or maintenance. In this paper, we discuss the development of a smart thin film pressure transducer which is highly suitable for a precise measurement of pressure. The smart functions include automatic zero tracking, automatic span adjustment, temperature compenstion, continuous self-diagnostics for faults (open strain gages, abnormal data, incorrect A/D conversion, and overpressure), data memory and multi-drop communication with PC

  • PDF

Self-Sensing 작동기를 이용한 복합재 보의 강인제어 시뮬레이션 (Robust Control Simulation of a Composite Beam using Self-Sensing Actuators)

  • 권대규;최병용;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.284-287
    • /
    • 2001
  • This paper presents the robust control simulation of a composite beam using self-sensing actuators(SSA). The self-sensing actuator is a new concept for intelligent material, where a single piezoelectric element simultaneously functions as both a sensor and an actuator. In a practical implementation of the self-sensing actuator an electrical bridge circuit is used to measure strain. The circuit could provide significant information about strain in the element if it were well-balanced. Our aim is design a robust controller which guarantees that the performance of a self-sensing actuator is robust against perturbation of the bridge balance and to confirm the advantages of this technique. Simulation results show that the self-sensing actuator driven by the designed controller exhibits excellent performance in suppressing the vibration of a composite beam.

  • PDF

초고강도 강섬유보강 콘크리트의 수축특성 (Shrinkage Properties of Ultra High Strength Steel Fiber Reinforced Concrete)

  • 고경택;배장춘;이건철;강수태;김성욱;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.647-650
    • /
    • 2005
  • This paper is to investigate the shrinkage properties of ultra high strength concrete(UHSC) incorporating $5\%$ of expansive additives(EA) along with $1\%$ of shrinkage reducing agent(SRA). UHSC subjected to steam curing and incorporated with steel fiber exhibited higher compressive strength than control UHSC by as much as50MPa at 7days, while at 28days, noticeable change in compressive strength was not observed between UHSC mixtures. Control UHSC subjected to steam curing had a $922{\times}10^6$ of autogenous shrinkage strain value, which was 6.7 times of drying shrinkage strain value at 42 days. The combination of EA and SRA resulted in a decrease in autogenous shrinkage by as much as half of control mixture. Steam curing contributed to the reduction of autogenous shrinkage by as much as $11\%$ compared with that of standard curing.

  • PDF

Repair Performance of Engineered Cementitious Composites(ECC) Treated with Wet-Mix Spraying Process

  • Kim, Yun-Yong
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.207-211
    • /
    • 2006
  • This paper presents an experimental study on the repair performance of sprayed engineered cementitious composites(ECC) serving as a repair material. Sprayable ECC, which exhibit tensile strain-hardening behavior in the hardened state and maintain sprayable properties in the fresh state, have been developed by using a parallel control of micromechanical design and rheological process design. The effectiveness of sprayable ECC in providing durable repaired structures was assessed by spraying the ECC and testing them for the assessment. The experimental results revealed that, when sprayed ECC were used as a repair material, both load carrying capacity and ductility represented by the deformation capacity at peak load of the repaired flexural beams were obviously increased compared to those of commercial prepackaged mortar(PM) repaired beams. The significant enhancement in the energy absorption capacity and tight crack width control of the ECC repair system treated with wet-mix spraying process suggests that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

사과 부란변 방제를 위한 길항미생물 분리 및 동정 (Isolation and Identification of Antagonistic Microorganisms for Biological Control to Apple Tree Diseases, Canker(Valsa ceratosperma))

  • 박흥섭;조정일
    • 한국유기농업학회지
    • /
    • 제6권1호
    • /
    • pp.35-43
    • /
    • 1997
  • For the purpose of acquiring microbial agents that can be utilized to billogically control the major airborne disease to apple trees, such as canker(Valsa ceratosperma), the effective microorgaisms were isolated, tested for antagonistic activity to the pathogen causing major disease to apple trees and identifed. Screening of more than 3, 000 species of microorganisms collected in nature for them antagonistic action to the pathogen, Valsa ceratosperma causing disease to apple tree resulted in selection of effective species. Out of the 11 species, one species designated as CAP141 demonstrated outstanding activity. The bacterial strain, CAP141 exerted antagonistic efficiency of 65% on Valsa ceratosperma. The CAP141 was identified as a bacterial strain to Bacillus subtilis based on morphology, culture conditions, and physio-biochemical characteristics.

  • PDF

Antifungal Properties of Streptomyces bacillaris S8 for Biological Control Applications

  • Da-Ran Kim;Chang-Wook Jeon;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.322-328
    • /
    • 2024
  • Soybean (Glycine max), a crucial global crop, experiences yearly yield reduction due to diseases such as anthracnose (Colletotrichum truncatum) and root rot (Fusarium spp.). The use of fungicides, which have traditionally been employed to control these phytopathogens, is now facing challenges due to the emergence of fungicide-resistant strains. Streptomyces bacillaris S8 strain S8 is previously known to produce valinomycin t through a nonribosomal peptide synthetase (NRPS) pathway. The objective of this study was to evaluate the antifungal activity of S. bacillaris S8 against C. truncatum and Fusarium sp., assessing its efficacy against soybean pathogens. The results indicate that strain S8 effectively controlled both above-ground and underground soybean diseases, using the NRPS and NRPS-related compound, suggesting its potential as a biological control in plant-microbe interactions. These findings underscore the pivotal role of the stain S8 in fostering healthy soybean microbial communities and emphasize the significance of microbiota structure studies in unveiling potent biocontrol agents.

Microscopic damping mechanism of micro-porous metal films

  • Du, Guangyu;Tan, Zhen;Li, Zhuolong;Liu, Kun;Lin, Zeng;Ba, Yaoshuai;Ba, Dechun
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1388-1392
    • /
    • 2018
  • Metal thin films are used widely to solve the vibration problem. However, damping mechanism is still not clear, which limits the further improvement of the damping properties for film and the development of multi-functional damping coating. In this paper, Damping microscopic mechanism of porous metal films was investigated at both macroscopically and microscopically mixed levels. Molecular dynamics simulation method was used to model and simulate the loading-unloading numerical experiment on the micro-pore and vacancy model to get the stress-strain curve and the microstructure diagram of different defects. And damping factor was calculated by the stress-strain curve. The results show that dislocations and new vacancies appear in the micro-pores when metal film is stretched. The energetic consumption from the motion of dislocation is the main reason for the damping properties of materials. Micro-mechanism of damping properties is discussed with the results of in-situ experiment.

Mechanosensitive Modulation of Receptor-Mediated Crossbridge Activation and Cytoskeletal Organization in Airway Smooth Muscle

  • Hai, Chi-Ming
    • Archives of Pharmacal Research
    • /
    • 제23권6호
    • /
    • pp.535-547
    • /
    • 2000
  • Recent findings indicate that mechanical strain (deformation) exerted by the extracellular matrix modulates activation of airway smooth muscle cells. Furthermore, cytoskeletal organization in airway smooth muscle appears to be dynamic, and subject to modulation by receptor activation and mechanical strain. Mechanosensitive modulation of crossbridge activation and cytoskeletal organization may represent intracellular feedback mechanisms that limit the shortening of airway smooth muscle during bronchoconstriction. Recent findings suggest that receptor-mediated signal transduction is the primary target of mechanosensitive modulation. Mechanical strain appears to regulate the number of functional G-proteins and/or phospholipase C enzymes in the cell membrane possibly by membrane trafficking and/or protein translocation. Dense plaques, membrane structures analogous to focal adhesions, appear to be the primary target of cytoskeletal regulation. Mechanical strain and receptor-binding appear to regulate the assembly and phosphorylation of dense plaque proteins in airway smooth muscle cells. Understanding these mechanisms may reveal new pharmacological targets for control1ing airway resistance in airway diseases.

  • PDF