• Title/Summary/Keyword: Strain-control

Search Result 2,275, Processing Time 0.036 seconds

Isolation and Cultural Characteristics of Styrene Dimer [Endocrine Disrupter] Biodegrading Microorganism (Styrene dimer [환경호르몬 물질] 분해균주의 분리 및 배양특성)

  • ;;;Saido Katsuhiko
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.315-320
    • /
    • 2004
  • We examined the culture conditions and degrading characteristics of styrene dimer (endocrine disrupter) using microorganism. The isolated microbe were consisted of 3 kinds of strain. The strains were identified to Pseudomonas sp. and Klebsiella pneumoniae by API 20E kit, but one was not identified. Single strain was not grown on the C-medium containing styrene dimer. However the complex strain YH3 could grow and we confirmed it by the broth color and O.D$_{660nm}$ (optical density 660 nm). The optimal culture conditions of complex strain YH3 were 35$^{\circ}C$, 1,000 ppm (v/v) of styrene dimer and pH 7.0, respectively. In tolerance test against the organic solvents, the complex strain YH3 could grow above log P=3.1, and could degrade ethyl benzene and 2,4-D, one kind of herbicide. As a result of TLC (Thin Layer Chromatography) analysis, we confirmed that the metabolite of styrene dimer was created by YH3 after 5th day, but not at control samples.

Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects (유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성)

  • Ha, J.S.;Koh, S.K.;Ong, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

The Effect of a Long-Term Cyclic Strain on Human Dermal Fibroblasts Cultured in a Bioreactor on Chitosan-Based Scaffolds for the Development of Tissue Engineered Artificial Dermis

  • Lim, Sae-Hwan;Son, Young-Sook;Kim, Chun-Ho;Shin, Heung-Soo;Kim, Jong-Il
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.370-378
    • /
    • 2007
  • Mechanical stimulation is known to activate several cellular signal transduction pathways, leading to the induction of signaling molecules and extracellular matrix (ECM) proteins, thereby modulating cellular activities, such as proliferation and survival. In this study, primary human dermal fibroblasts (HDFs) were seeded onto chitosan-based scaffolds, and then cultured for 3 weeks in a bioreactor under a cyclic strain of 1 Hz frequency. Compared to control samples cultured under static conditions, the application of a cyclic strain stimulated the proliferation of HDFs in I week, and by week 3 the thickness of the cell/scaffold composites increased 1.56 fold. Moreover, immunohistochemical staining of the culture media obtained from the cell/scaffold samples subjected to the cyclic strain, revealed increases in the expression and secretion of ECM proteins, such as fibronectin and collagen. These results suggest that the preconditioning of cell/scaffold composites with a cyclic strain may enhance the proliferation of HDFs, and even facilitate integration of the engineered artificial dermal tissue into the host graft site.

Stabilization and Antifungal Activity of Isolated Symbiotic Bacteria from Entomopathogenic Nematodes (곤충병원성 선충에서 분리한 공생세균의 안정화 및 항진균활성)

  • Kang, Dong-Hee;Kim, Hyo-Hyun;Nam, Uk-Ho;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.132-139
    • /
    • 2015
  • In order to use the symbiotic bacteria from ethomophatogenic nematodes as a biological control agent for agriculture, the cultural condition for maintaining phase I and antifungal activity was investigated. Symbiotic bacteria (SB) 1 stain from nematodes were selected from the three strains isolated from entomopathogenic nematodes. The growth of the SB 1 strain in NB, TSB, TY and YS medium was higher than that of the SB 2 and SB 3 strain. The packed cell volume of the SB 1 strain was reduced in NB medium which showed radical pH change. Phase I of the SB 1 strain was maintained in TSB medium after being stored for 2 weeks at $4^{\circ}C$. Culture broth with the SB 1 strain in TSB medium for 6 days and 7 days showed antifungal activities against Rhizoctonia solani KACC 40142, Botrytis cinerea Pers. KACC 40854, and Botrytis cinerea Pers. KACC 41008. Culture broth with the SB 1 strain in TSB medium containing 100 mM L-proline for 5 days showed antifungal activities against Rhizoctonia solani KACC 40142, and Botrytis cinerea Pers. KACC 40854.

A Study on the Service Load State Behavior of Reinforced Concrete Plate Member

  • Bhang, Jee-Hwan;Kang, Won-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.55-72
    • /
    • 2000
  • This paper proposes a mechanical model to describe the load-deformation responses of the reinforced concrete plate members under service load state. An Analytical method is introduced on the basis of the rotating crack model which considers equilibrium, compatibility conditions, load-strain relationship of cracked member, and constitutive law for materials. The tension stiffening effect in reinforced concrete structures is taken into account by the average tensile stress-strain relationship from the load-strain relationship for the cracked member and the constitutive law for material. The strain compatibility is used to find out the crack direction because the crack direction is an unknown variable in the equilibrium and compatibility conditions. The proposed theory is verified by the numerous experimental data such as the crack direction, moment-steel strain relationship, moment-crack width relationship. The present paper can provide some basis for the provision of the definition of serviceability for plate structures of which reinforcements are deviated from the principal stresses, because the present code defines the serviceability by the deflection, crack control, vibration and fatigue basically for the skeletal members. The proposed theory is applicable to predict the service load state behavior of a variety of reinforced concrete plate structures such as skew slab bridges, the deck of skew girder bridges.

  • PDF

Isolation and Characterization of Bacillus sp. BT182-3 for Biocontrol Against a Plant Pathogenic Pseudomonas syringae (식물병원균 Pseudomonas syringae에 대한 생물방제균 Bacillus sp. BT182-3의 분리 및 특성)

  • 김광현;김위종;이광배
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.113-120
    • /
    • 1998
  • For a microbial control of a plant pathogenic Pseudomonas syringae, Bacillus sp. strain BT182-3 was isolated. The strain BT182-3 had a growth inhibition against P. syringae not only on agar plate but also on cultured broth. After heat treatment at $40^{\cird}C$ and $80^{\cird}C$ for 30min, the lytic substance from the strain BT182-3 had about 52% remaining activity and 17% remaining activity, respectively. The optimal pH and temperature of the lytic substance was 6.0 and $28^{\cird}C$, respectively. Germination ratio of healthy radish seeds was 87% at $25^{\cird}C$ for 5 days in 0.8% saline, and that of the radish seeds infected with P. syringae was 67%, while that of the radish seeds treated with cultured broth of the strain BT182-3 was 90%. The 5-days healthy radish seedlings were 3.90cm at high and the seedlings infected with P. syringae were 3.06cm at high, while the seedlings treated with cultured broth of the strain BT182-3 were 4.30cm at high. The growth of the radish seedlings infected with P. syringae was inhibited after cultivation for 40days on pots, while the growth of the infected radish seedlings with P. syringae was recovered at stem length, root length and total weight at the same as the healthy seedlings after treatment of a lytic substance from the strain BT182-3.

  • PDF

Strain Improvement of Leuconostoc mesenteroides for Kimchi Fermentation and Effect of Starter (김치 발효를 위한 Leuconostoc mesenteroides 균주의 개량과 starter로의 첨가효과)

  • Kang, Sang-Mo;Yang, Wan-Suk;Kim, Young-Chan;Joung, Eun-Young;Han, Yong-Gu
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.461-471
    • /
    • 1995
  • The heterofermentative Leuconostoc mesenteroides, which is propagated from the initial to the intermediate stage of Kimchi fermentation, produces organic acids and carbon dioxide to impart refreshment, weak acid taste to Kimchi. But owing to lactic acid production by the homofermentative Lactobacillus Plantarum, Kimchi finally reaches its acidified state. So, Leu. mesenteroides was isolated from Kimchi and identified and was improved by mutation for carbon dioxide production at low pH, and for the high total acceptability. We tested with a wild-type strain K-1 and its improved mutant strain M-10 of Leu. mesenteroides. The wild-type strain K-1 could grow in pH 4.2 at 30$\circ$C or 20$\circ$C, and in pH 5.0 at 10$\circ$C. But the mutant strain M-10 could grow in pH 3.3 at 10$\circ$C. In the respect of total acceptability, mutant strain M-10 inoculated Kimchi was ever better than any others. Mutant M-10 inoculated Kimchi prolonged the optimum ripening period of Kimchi up to two times as compared with the control group.

  • PDF

Isolation, Screening, and Identification of Actinomycetes with Antifungal and Enzyme Activity Assays against Colletotrichum dematium of Sarcandra glabra

  • Song, Lisha;Jiang, Ni;Wei, Shugen;Lan, Zuzai;Pan, Limei
    • Mycobiology
    • /
    • v.48 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • A serious leaf disease caused by Colletotrichum dematium was found during the cultivation of Sarcandra glabra in Jingxi, Rong'an, and Donglan Counties in Guangxi Province, which inflicted huge losses to plant productivity. Biological control gradually became an effective control method for plant pathogens. Many studies showed that the application of actinomycetes in biological control has been effective. Therefore, it may be of great significance to study the application of actinomycetes on controlling the diseases caused by S. glabra. Strains of antifungal actinomycetes capable of inhibiting C. dematium were identified, isolated and screened from healthy plants tissues and the rhizospheres in soils containing S. glabra. In this study, 15 actinomycetes strains were isolated and among these, strains JT-2F, DT-3F, and JJ-3F, appeared to show antagonistic effects against anthracnose of S. glabra. The strains JT-2F and DT-3F were isolated from soil, while JJ-3F was isolated from plant stems. The antagonism rate of strain JT-2F was 86.75%, which was the highest value among the three strains. Additionally, the JT-2F strain also had the strongest antagonistic activity when the antagonistic activities were tested against seven plant pathogens. Strain JT-2F is able to produce proteases and cellulase to degrade the protein and cellulose components of cell walls of C. dematium, respectively. This results in mycelia damage which leads to inhibition of the growth of C. dematium. Strain JT-2F was identified as Streptomyces tsukiyonensis based on morphological traits and 16S rDNA sequence analysis.

Bacillus spp. as Biocontrol Agents of Root Rot and Phytophthora Blight on Ginseng

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.63-66
    • /
    • 2004
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. However, yield losses reached up to 30-60% due to various diseases during 3 or 5 years of ginseng cultivation in the country. Therefore, successful production of ginseng roots depends primarily on the control of diseases. The objective of this study was to select potential biocontrol agents from rhizobacteria isolated from various plant internal root tissues for the control of multiple ginseng diseases as an alternative to fungicides. Among 106 Bacillus strains, two promising biocontrol agents, Bacillus pumilus strain B1141 and Paenibacillus lentimobus strain B1146, were selected by screening against root rot of ginseng caused by Cylindrocarpon destructans in a greenhouse. Pre-inoculation of selected isolates to seed or l-year-old root of ginseng resulted in stimulation of shoot and/or root growth of seedlings, and successfully controlled root rot caused by C. destructans (P<0.05). Furthermore, drenching of cell suspension of the selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight after the seedlings were challenged with zoospores of Phytophthora cactorum (P<0.05). P. lentimorbus strain B1146 showed antifungal activity against various soil-borne pathogens in vitro, while B. pumilus strain B1141 did not show any. Results of this study suggest that some rhizobacteria can induce resistance against various plant diseases on ginseng.

Rhizospheric-Derived Nocardiopsis alba BH35 as an Effective Biocontrol Agent Actinobacterium with Antifungal and Plant Growth-Promoting Effects: In Vitro Studies

  • Mohamed H. El-Sayed;Abd El-Nasser A. Kobisi;Islam A. Elsehemy;Mohamed A. El-Sakhawy
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.607-620
    • /
    • 2023
  • The biocontrol approach using beneficial microorganisms to control crop diseases is becoming an essential alternative to chemical fungicides. Therefore, new and efficient biocontrol agents (BCA) are needed. In this study, a rhizospheric actinomycete isolate showed unique and promising antagonistic activity against three of the most common phytopathogenic fungi, Fusarium oxysporum MH105, Rhizoctonia solani To18, and Alternaria brassicicola CBS107. Identification of the antagonistic strain, which was performed according to spore morphology and cell wall chemotype, suggested that it belongs to the Nocardiopsaceae. Furthermore, cultural, physiological, and biochemical characteristics, together with phylogenetic analysis of the 16S rRNA gene (OP869859.1), indicated the identity of this strain to Nocardiopsis alba. The cell-free filtrate (CFF) of the strain was evaluated for its antifungal potency, and the resultant inhibition zone diameters ranged from 17.0 ± 0.92 to 19.5 ± 0.28 mm for the tested fungal species. Additionally, the CFF was evaluated in vitro to control Fusarium wilt disease in Vicia faba using the spraying method under greenhouse conditions, and the results showed marked differences in virulence between the control and treatment plants, indicating the biocontrol efficacy of this actinomycete. A promising plant-growth promoting (PGP) ability in seed germination and seedling growth of V. faba was also recorded in vitro for the CFF, which displayed PGP traits of phosphate solubilization (48 mg/100 ml) as well as production of indole acetic acid (34 ㎍/ml) and ammonia (20 ㎍/ml). This study provided scientific validation that the new rhizobacterium Nocardiopsis alba strain BH35 could be further utilized in bioformulation and possesses biocontrol and plant growth-promoting capabilities.