• Title/Summary/Keyword: Strain-based design

Search Result 776, Processing Time 0.027 seconds

Dynamic analysis of a porous microbeam model based on refined beam strain gradient theory via differential quadrature hierarchical finite element method

  • Ahmed Saimi;Ismail Bensaid;Ihab Eddine Houalef
    • Advances in materials Research
    • /
    • v.12 no.2
    • /
    • pp.133-159
    • /
    • 2023
  • In this paper, a size-dependent dynamic investigation of a porous metal foams microbeamsis presented. The novelty of this study is to use a metal foam microbeam that contain porosities based on the refined high order shear deformation beam model, with sinusoidal shear strain function, and the modified strain gradient theory (MSGT) for the first time. The Lagrange's principle combined with differential quadrature hierarchicalfinite element method (DQHFEM) are used to obtain the porous microbeam governing equations. The solutions are presented for the natural frequencies of the porous and homogeneoustype microbeam. The obtained results are validated with the analytical methods found in the literature, in order to confirm the accuracy of the presented resolution method. The influences of the shape of porosity distribution, slenderness ratio, microbeam thickness, and porosity coefficient on the free vibration of the porous microbeams are explored in detail. The results of this paper can be used in various design formetallic foammicro-structuresin engineering.

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.

A Study on the Intial Blank Design Using Ideal Forming Theory (이상적 변형이론을 이용한 박판 초기형상 설계에 관한 연구)

  • 박상후;윤정환;양동열;김용환;이장희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.207-218
    • /
    • 1997
  • A new blank design method is introduced to predict the blank shape and the strain distribution in the sheet metal forming process. This method deals with only one step from the final shape to the initial blank using the ideal forming theory. Based on this theory, a three-dimensional membrane finite element code has been developed to design an initial blank in the sheet metal forming process. In this paper, the designs of initial blanks for forming a cylindrical cup, a rectangular cup, and a front fender are presented as examples. Also, it compares the two shapes, the target shape with the shape which is deformed from the initial blank using the FEM analysis code. The results illustrate the information that this direct design code is useful in the preliminary design state.

  • PDF

Improved Optimal Approximated Unfolding Algorithm of a Curved Shell Plate with Automatic Mesh Generation (자동 메쉬 생성을 적용한 향상된 자유 곡면의 최적 근사 전개 알고리즘)

  • Ryu C.H.;Shin J.G.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.157-163
    • /
    • 2006
  • Surfaces of many engineering structures, especially, those of ships are commonly made out of either single- or double-curved surfaces to meet functional requirements. The first step in the fabrication process of a three-dimensional design surface is unfolding or flattening the surface, otherwise known as planar development, so that manufacturers can determine the initial flat plate which is required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both single- and double-curved surfaces, is established by minimizing the strain energy of deformation from its planar development to the design surface. The unfolding process is formulated into a constrained nonlinear programming problem, based on the deformation theory and finite element. Constraints are subjected to the characteristics of the fabrication method. And the design surface, or the curved shell plate is subdivided by automatic mesh generation.

Approximate Prediction of Soil Deformation Caused by Repeated Loading (반목하중으로 인한 지반의 변형 예측)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.69-81
    • /
    • 1988
  • The Repeated Load Triaxial and Oedometer Tests to the weathered granite & silty clay soil have been fulfilled to investigate their dynarnic characteristics. The results obtained are summarized as follows ; 1. In the relation between the repeated triaxial compression and the oedometer test, the recoverable strain of weathered granite soil showed a tendency to decrease by the increase of the repeated loads number(N), and that of silty clay showed approximately constant values while the total strain increased continuously. 2. The changes of plastic strain was dependent to the level of deviator stress which is the most important element in the calculation of soil deformation under repeated load condition. And there was a significance of 10% between the level of stress and plastic strain. 3. When the soil was aimost dried or saturated to 100%, the deformation by the repeated loads was small. However the deformation showed peak around the saturation of 50%. 4. When the deformation was predicted by the repeated triaxial load tests of a laboratory, it is desirable to introduce the threshold stress concept in the calculation of deformation of subgrade of the pavement. 5. The improved design equation (Eq. 16) introducing the modulus of conversion(Fo), which is based on the Boussineq' s theory, is considered to be rational in the design of flexible pavement. From the above results, the deformation to the repeated traffic loads could be predicted by the repeated triaxial tests on the pavement materials or undisturbed soil layers, therefore it is think that the durable and econornic pavement could be constructed by reflecting that to the design.

  • PDF

Determination of winding diameter based on bending strain analysis for REBCO coated conductor tapes

  • Leon, M.B. De;Dedicatoria, M.J.;Shin, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.8-11
    • /
    • 2012
  • In order to recognize the allowable bending diameter in coils, the strain as function of diameters is evaluated. The irreversible strain limits of $I_c$ in the easy and hard bending modes were measured. Strains were calculated at the coating film in the easy bending and at outer edge or inner edge in the hard bending of the CC tape, respectively. The tape geometry subjected to bending procedures is considered from the current industrial spool winding operation. Through the linear superposition of strain induced in different bending modes regarding the expressions, the appropriate design for critical bending diameter is suggested. Results proved that the existence of buckling resulting from bending in hard direction when applied strain exceeded 0.6% is possible. The depicted results showed that the strain limit as a viable parameter should be considered for future purposes.

Multi-objective optimization of submerged floating tunnel route considering structural safety and total travel time

  • Eun Hak Lee;Gyu-Jin Kim
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.323-334
    • /
    • 2023
  • The submerged floating tunnel (SFT) infrastructure has been regarded as an emerging technology that efficiently and safely connects land and islands. The SFT route problem is an essential part of the SFT planning and design phase, with significant impacts on the surrounding environment. This study aims to develop an optimization model considering transportation and structure factors. The SFT routing problem was optimized based on two objective functions, i.e., minimizing total travel time and cumulative strains, using NSGA-II. The proposed model was applied to the section from Mokpo to Jeju Island using road network and wave observation data. As a result of the proposed model, a Pareto optimum curve was obtained, showing a negative correlation between the total travel time and cumulative strain. Based on the inflection points on the Pareto optimum curve, four optimal SFT routes were selected and compared to identify the pros and cons. The travel time savings of the four selected alternatives were estimated to range from 9.9% to 10.5% compared to the non-implemented scenario. In terms of demand, there was a substantial shift in the number of travel and freight trips from airways to railways and roadways. Cumulative strain, calculated based on SFT distance, support structure, and wave energy, was found to be low when the route passed through small islands. The proposed model helps decision-making in the planning and design phases of SFT projects, ultimately contributing to the progress of a safe, efficient, and sustainable SFT infrastructure.

Prediction of Forming Limit Diagram Dependent on Strain History in Sheet Metal Forming (변형경로를 고려한 판재의 성형한계도 예측)

  • Kim, Nak-Su;Choe, Gwang-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1107-1118
    • /
    • 2001
  • The forming limit diagram introduced by Keeler and Goodwin has been used generally to analyze the formability of sheet metal. However, path dependent forming limit curves based on the state of strain can be explained only by a single criterion which is based on the state. In this study, experimental forming limits in strain space of some metal sheets are transformed into forming limit curves in stress space. Effects of yield criterion are investigated in transforming the forming limit curves. Some important design aspects which are based on the close prediction of movements in forming limit curves during sheet forming are concluded.

Process Design for Profile Ring Rolling of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 형상 링 압연 공정설계)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.357-360
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was designed by finite element(FE) simulation and experimental analysis. The design includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

Pobabilistic Design of Asphalt Pavement Surface Courae (아스팔트 鋪裝道路의 確率論的 表層設計)

  • Kim, Gwang-U;Yeon, Gyu-Seok
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.66-77
    • /
    • 1992
  • A prototype probabilistic approach to thickness design for asphalt pavement surface course was developed using first-order second moment probability model. The tensile strain (load effect) developing at the bottom of surface layer due to the wheel load and the critical strain (resistance) of asphalt concrete were used as random variables for pavement reliability analysis. Based on the parameters for load effect and resistance data collected from reference and field, simulated data were generated by Monte Carlo method for reliability evaluation of the pavement for a typical rural highway. Thickness of pavement surface course was defined in terms of target reliability of the pavement, growth factor of traffic, design life of pavement and resistance of the asphalt concrete to be placed on the pavement. According to these rationales, prototype thickness design chrats were sugested through example studies. From these, similar design charts can be developed for many pavements if appropriate data and target reliability are determined.

  • PDF