• 제목/요약/키워드: Strain-Gauge

검색결과 574건 처리시간 0.028초

디지털 이미지 상관관계를 이용한 Al 6061-T6 인장시험편의 변형률 측정에 관한 연구 (A Study of the Strain Measurement for Al 6061-T6 Tensile Specimen using the Digital Image Correlation)

  • 권오헌;김상태;강지웅
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.26-32
    • /
    • 2013
  • A digital image correlation(DIC) method is a whole-field measurement technique that acquires surface displacements and strains from images information which characterized a random speckle as intensity grey levels. Recently years, this DIC method is being developed and used increasingly in various research. In this study, we tried to apply to aluminum alloy(Al 6061-T6) using DIC method and strain gauge. DIC results demonstrated the usefulness and ability to determine a strain. The test specimen used in this study was an aluminum alloy(Al 6061-T6, thickness 1 mm). For a strain measurement, a strain gauge was attached at the center of a specimen. A specimen was lightly sprayed with a white paint and a black dot pattern was sprayed on its fully dried white surface to obtain a random speckle. The experimental apparatus used to perform the tensile test consisted of universal dynamic tester(5 kN; T.O. Co.) under displacement speed of 0.5, 1.0 and 3.0 mm/min. A Model 5100 B Scanner(V. Co.) used to obtain a strain. A CCD camera connected to a PC uses to record the images of the specimen surface. After acquisition, the images were transferred to PC where the DIC software was implemented. An acquired image was evaluated by the DIC program. DIC method for displacement and strain was suggests and it results show a good consistent remarkably. DIC results demonstrated the usefulness and ability to determine surface strain was better than by using classical measurements. The strain field measurement using a DIC is so useful that it can be applied to map strain distributions at a full area. DIC method can evaluate a strain change so it can predict a location of fracture. The findings of the investigation suggest that the DIC method is an efficient and reliable tool for full-field monitoring and detailed damage characterization of materials.

A STRAIN GAUGE ANALYSIS OF IMPLANT-SUPPORTED CANTILEVERED FIXED PROSTHESIS UNDER DISTAL STATIC LOAD

  • Sohn, Byoung-Sup;Heo, Seong-Joo;Chang, Ik-Tae;Koak, Jai-Young;Kim, Seong-Kyun
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.717-723
    • /
    • 2007
  • Statement of problem. Unreasonable distal cantilevered implant-supported prosthesis can mask functional problems of reconstruction temporarily, but it can cause serious strain and stress around its supported implant and surrounding alveolar bone. Purpose. The purpose of this study was to evaluate strain of implants supporting distal cantilevered fixed prosthesis with two different cantilevered length under distal cantilevered static load. Material and methods. A partially edentulous mandibular test model was fabricated with auto-polymerizing resin (POLYUROCK; Metalor technologies, Stuttgart, Swiss) and artificial denture teeth (Endura; Shofu inc., Kyoto, Japan). Two implants-supported 5-unit screw-retained cantilevered fixed prosthesis was made using standard methods with Type III gold alloy (Harmony C&B55; Ivoclar-vivadent, Liechtenstein, Germany) for superstructure and reinforced hard resin (Tescera; Ivoclar-vivadent, Liechtenstein, Germany) for occlusal material. Two strain gauges (KFG-1-120-C1-11L1M2R; KYOWA electronic instruments, Tokyo, Japan) were then attached to the mesial and the distal surface of each standard abutment with adhesive (M-bond 200; Tokuyama, Tokyo, Japan). Total four strain gauges were attached to test model and connected to dynamic signal conditioning strain amplifier (CTA1000; Curiotech inc., Paju, Korea). The stepped $20{\sim}100$ N in 25 N increments, cantilevered static load 8mm apart (Group I) or 16mm apart (Group II), were applied using digital push-pull gauge (Push-Pull Scale & Digital Force Gauge, Axis inc., Seoul, Korea). Each step was performed ten times and every strain signal was monitored and recorded. Results. In case of Group I, the strain values were surveyed by $80.7{\sim}353.8{\mu}m$ in Ch1, $7.5{\sim}47.9{\mu}m/m$ in Ch2, $45.7{\sim}278.6{\mu}m/m$ in Ch3 and $-212.2{\sim}718.7{\mu}m/m$ in Ch4 depending on increasing cantilevered static load. On the other hand, the strain values of Group II were surveyed by $149.9{\sim}612.8{\mu}m/m$ in Ch1, $26.0{\sim}168.5{\mu}m/m$ in Ch2, $114.3{\sim}632.3{\mu}m/m$ in Ch3, and $-323.2{\sim}-894.7{\mu}m/m$ in Ch4. Conclusion. A comparative statistical analysis using paired sample t-test about Group I Vs Group II under distal cantilevered load shows that there are statistical significant differences for all 4 channels (P<0.05).

전자처리 Speckle Pattern 간섭법에 의한 균열평판의 Strain 해석에 관한 연구 (A Study on the Strain Analysis of Cracked Plate by Electronic Speckle Pattern Interferometry)

  • 김경석;양승필
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1382-1390
    • /
    • 1995
  • Electronic Speckle Pattern Interferometry (ESPI) with a CW laser, a video system and an image processor was utilized to measure the in-plane displacement. Unlike traditional strain gauges or Moire method. ESPI method measure the in-plane displacement on real time with out any surface preparation on surface attachment. The specimen has a crack of 10*0.1 mm in the middle of plate and strain gauge was also attached on that surface to compare with ESPI method. This study reveled the ESPI method to measure the displacement and distribution of strain in the specimen. It was shown in tensile tests that the measurement by ESPI method was comparable with strain gauge.

광섬유 TR-EFPI 센서를 이용한 GFRP 직교 적층판의 변형률 해석 (Strain Analysis in GFRP Cross-Ply Laminates Using TR-EFPI Optical Fiber Sensor)

  • 우성충;최낙삼;권일범
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.150-153
    • /
    • 2003
  • Longitudinal strains({$varepsilon}_x$) of the core and skin layers in glass fiber reinforced plastic(GFRP) cross-ply composite laminates have been studied using the embedded optical fiber sensor of totally-reflected extrinsic Fabry-Perot interferometer(TR-EFPI). Foil-type strain gauges bonded on both the upper and lower surfaces were used for the measurement of the surface strains. Both TR-EFPI sensor and strain gauge bonded on the specimen surface showed excellent agreement within -0.0086 ~ +0.0302% strain. It was shown that values of {$varepsilon}_x$ in the interior of the surface layer and the core layer measured by embedded TR-EFPI sensor was significantly higher than that of the specimen surface measured by strain gauges. The experimental results were ascertained with finite element analysis. Embedded TR-EFPI optical fiber sensor could measure accurately the internal strains which were different from the surface.

  • PDF

점 용접부의 변형률 측정 및 영향 평가 (Evaluation on the Influence and Measurement of Strain in Spot Welded Joint)

  • 차용훈
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.52-57
    • /
    • 1997
  • Electronic Speckle Pattern Interferometry(ESPI) using the Model 95 Ar. laser, a video system and an image processor was applied to the in-plane displacement measurements. Unlike traditional strain gauges or Moire method, ESPI method requires no special surface preparation or attachments and can be measured in-plane displacement with no special surface preparation or attachments and can be measured in-plane displacement with no contact and real time. In this experiment specimen was loaded in parallel with a loadcell. The specimen was the cold rolled steel sheet of 2mm thickness, which was attached strain gauges. The study provides an example of how ESPI have been used to measure strain displacement in this specimen. The results measured by ESPI compare with the data which was measured by strain gauge method in tensile testing.

  • PDF

공용중인 교량의 응력이력 계측 및 응력범주를 고려한 피로평가 (Fatigue Evaluation of a Steel Bridge in Service through Stress History Measurement and Consideration of Stress Category)

  • 나성옥;권민호;차철준;김인호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.108-116
    • /
    • 2014
  • 강교의 정확한 피로균열의 발생원인 또는 교량의 피로안전성을 검토하기 위해서는 적합한 응력이력 측정이 요구된다. 그러나 실제 현장에서의 응력이력 측정은 현장 여건과 경제성, 작업성 등의 이유로 1개소의 스트레인게이지를 설치하여 계측을 실시한다. 이는 특정 구조물의 실제 치수와 게이지 길이 용접부 응력집중 등의 영향을 고려하지 못하고, 구조 모델링을 통한 응력해석에도 많은 어려움이 있다. 그러므로 본 연구에서는 용접단부에 다수의 게이지 설치, 최소 길이 게이지 사용, 설치 위치 등의 개선된 방법을 적용하여 용접단부와 스트레인게이지 설치 거리에 따른 변형률 진폭에 대한 상관식을 도출하고 국제용접협회 (IIW)의 제안식과 비교하였다. 또한 적합한 피로등급 상세범주 선정을 통해 공용중인 교량의 피로손상도 평가 및 잔존수명을 예측하고 분석하였다. 그 결과 피로균열 발생빈도가 높은 부재파악, 용접 단부와 게이지 설치 거리에 따른 변형률의 정량적 파악으로 정확한 피로손상도 평가 및 잔존수명 예측이 가능하므로 향후 교량의 응력이력 계측 시 개선된 방법을 적용해야 할 것이다.

STRAIN CHANGES OF ACRYLIC RESIN SPECIMENS CURED BY THREE CURING CYCLES

  • Kang, In-Ho;Kim, Yung-Soo;Kim, Chang-Whe
    • 대한치과보철학회지
    • /
    • 제40권3호
    • /
    • pp.236-245
    • /
    • 2002
  • The acrylic resin was first introduced as denture base materials in 1937 and it is commonly used for denture base fabrication nowadays. Three different curing cycles (Conventional curing cycle, short curing cycle and long curing cycle) and three commercially available heat-activated acrylic resins (Vertex RS, Lucitone 199 and ProBase Hot) were investigated to find the curing cycle and material that showed the minimum shrinkage of the resin during polymerization process. A brass master mold was fabricated and duplicated by additional silicone impression material. Stone molds were made by pouring of type III dental stone (SILKY-ROCK YELLOW, Whip-Mix, Louisville, Kentucky). It was embedded in the flask. Strain gauge and thermocouple were embedded in the specimen. Strain gauge and thermocouple were connected to signal conditioning amplifier and data was recorded by pre-programmed software. The parameters ESmax (Maximum expansion strain), Sb (Strain measured just before deflasking procedure), Sa (Strain measured just after deflasking procedure) and Sf (Strain measured at the end of the experiment) were measured. ${\Delta}$S was calculated from Sb and Sa (${\Delta}$S=Sb-Sa). In the experiment concerned about materials, the parameters 90-ESmax (Maximum expansion strain measured during early 90 minutes of curing procedure), 180-ESmax (Maximum expansion strain measured from 90 minutes to 180 minutes), Sb, Sa, ${\Delta}$S and Sf were measured and the following conclusions were made. 1. The ESmax value of conventional curing cycle showed the largest value and the 180-ESmax value of Lucitone 199 showed the smallest value. 90-ESmax values showed no significant difference (p<0.05). 2. ${\Delta}$S values of conventional curing cycle showed the positive values. ${\Delta}$S values of short curing cycle and long curing cycle showed the negative values. All three materials cured by conventional curing cycle showed the positive values. 3. The Sf values of long curing cycle and ProBase Hot (cured by conventional curing cycle) showed the smallest values.

3점 굽힘시험에 있어서 AE, 초음파, 크랙게이지법의 비교연구 (A Study on Comparison of Acoustic Emission, Ultrasonic Testing and Crack Gauge Method in 3-point Bending Testing)

  • 한응교;김경석;박준서
    • 비파괴검사학회지
    • /
    • 제10권1호
    • /
    • pp.65-72
    • /
    • 1990
  • Comparison of acoustic emission, ultrasonic testing and crack gauge in 3-point bending testing have been studied. As the results, COD is indirectly assumed by strain gauge rate and grid pitch width when crack gauge grid is out. Acoustic emission is qualitatively able to measure crack growth by total count but ultrasonic testing has a difficulty in measuring it because of echo height fluctuation according to the change and pressure of UT. probe.

  • PDF

스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증 (Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load)

  • 이동섭;김인수;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses

  • Lee, Mi-Young;Heo, Seong-Joo;Park, Eun-Jin;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.312-318
    • /
    • 2013
  • PURPOSE. The aim of this study was to compare the passivity of implant superstructures by assessing the strain development around the internal tapered connection implants with strain gauges. MATERIALS AND METHODS. A polyurethane resin block in which two implants were embedded served as a measurement model. Two groups of implant restorations utilized cement-retained design and internal surface of the first group was adjusted until premature contact between the restoration and the abutment completely disappeared. In the second group, only nodules detectable to the naked eye were removed. The third group employed screw-retained design and specimens were generated by computer-aided design/computer-aided manufacturing system (n=10). Four strain gauges were fixed on the measurement model mesially and distally to the implants. The strains developed in each strain gauge were recorded during fixation of specimens. To compare the difference among groups, repeated measures 2-factor analysis was performed at a level of significance of ${\alpha}$=.05. RESULTS. The absolute strain values were measured to analyze the magnitude of strain. The mean absolute strain value ranged from 29.53 to 412.94 ${\mu}m/m$ at the different strain gauge locations. According to the result of overall comparison, the cement-retained prosthesis groups exhibited significant difference. No significant difference was detected between milled screw-retained prostheses group and cement-retained prosthesis groups. CONCLUSION. Within the limitations of the study, it was concluded that the cement-retained designs do not always exhibit lower levels of stress than screw-retained designs. The internal adjustment of a cement-retained implant restoration is essential to achieve passive fit.