• Title/Summary/Keyword: Strain softening

Search Result 336, Processing Time 0.026 seconds

Deformation Analysis of a Shallow NATM Tunnel using Strain Softening Model and Field Measurement (변형률 연화모델과 현장계측을 이용한 저토피 NATM터널의 변형해석)

  • Lee, Jaeho;Kim, Youngsu;Moon, Hongduk;Kim, Daeman;Jin, Guangri
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.29-36
    • /
    • 2007
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in urban tunnel construction. This paper carried out the estimation and prediction of ground behavior around tunnel due to excavation using computational method and case study in detail for the analysis of deformation behavior in urban NATM tunnel. Computational method was performed by FLAC-2D with strain softening model and elastic plastic model. Field measurements of surface subsidence and ground displacement were adopted to monitor the ground behavior resulting from the tunneling and these values were applied to modify tunnel design parameters on construction.

  • PDF

Nonlocal Formulation for Numerical Analysis of Post-Blast Behavior of RC Columns

  • Li, Zhong-Xian;Zhong, Bo;Shi, Yanchao;Yan, Jia-Bao
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.403-413
    • /
    • 2017
  • Residual axial capacity from numerical analysis was widely used as a critical indicator for damage assessment of reinforced concrete (RC) columns subjected to blast loads. However, the convergence of the numerical result was generally based on the displacement response, which might not necessarily generate the correct post-blast results in case that the strain softening behavior of concrete was considered. In this paper, two widely used concrete models are adopted for post-blast analysis of a RC column under blast loading, while the calculated results show a pathological mesh size dependence even though the displacement response is converged. As a consequence, a nonlocal integral formulation is implemented in a concrete damage model to ensure mesh size independent objectivity of the local and global responses. Two numerical examples, one to a RC column with strain softening response and the other one to a RC column with post-blast response, are conducted by the nonlocal damage model, and the results indicate that both the two cases obtain objective response in the post-peak stage.

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (I) - Monotonic and Cyclic Behavior - (냉간 가공된 316L 스테인리스강의 저주기 피로 거동에 미치는 온도의 영향 (I) - 인장 및 반복 거동 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.333-342
    • /
    • 2004
  • Tensile and low cycle fatigue (LCF) tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650$^{\circ}C$. At all test temperatures, cold worked material showed the tendency of higher strength and lower ductility compared with those of solution treated material. The embrittlement of material occurred in the temperature region from 300$^{\circ}C$ to 600$^{\circ}C$ due to dynamic strain aging. Following initial cyclic hardening for a few cycles, cycling softening was observed to dominate until failure occurred during LCF deformation, and the cyclic softening behavior strongly depended on temperature and strain amplitude. Non-Masing behavior was observed at all test temperatures and hysteresis energy curve method was employed to describe the stress-strain hysteresis loops at half$.$life. The prediction shows a good agreement with the experimental results.

The Influence of Temperature and Strain Rate on the Mechanical Behavior in Uranium

  • Lee, Key-Soon;Park, Won-Koo
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 1978
  • The effect of temperature and strain rate on the deformation behavior of $\alpha$-uranium was investigated in the temperature ranged 300$^{\circ}$ to 55$0^{\circ}C$ by strain, rate change test. Strain rate sensitivity, activation volume, strain rate sensitivity exponent and dislocation velocity exponent were determined. The strain rate sensitivity exponent and dislocation velocity exponent were determined. The strain rate sensitivity exponent increases with strain below 40$0^{\circ}C$, while the exponent decreases with strain above 50$0^{\circ}C$. It is believed that the increase of strain rate sensitivity exponent with strain below 40$0^{\circ}C$ can be attributed to an increase in internal stress as a result of work hardening while decrease of the exponent with strain above 50$0^{\circ}C$ is due to predominance of thermal softening over work hardening because more slip, system are active in deformation above about 50$0^{\circ}C$.

  • PDF

Characterizing the geotechnical properties of natural, Israeli, partially cemented sands

  • Frydman, Sam
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.323-337
    • /
    • 2011
  • Israel's coastal region consists, mainly, of Pleistocene and Holocene sands with varying degrees of calcareous cementation, known locally as "kurkar". Previous studies of these materials emphasized the difficulty in their geotechnical characterization, due to their extreme variability. Consequently, it is difficult to estimate construction stability, displacements and deformations on, or within these soils. It is suggested that SPT and Menard pressuremeter tests may be used to characterize the properties of these materials. Values of elastic modulus obtained from pressuremeter tests may be used for displacement analyses at different strain levels, while accounting for the geometric dimensions (length/diameter ratio) of the test probe. A relationship was obtained between pressuremeter modulus and SPT blow count, consistent with published data for footing settlements on granular soils. Cohesion values, for a known friction angle, are estimated, by comparing field pressuremeter curves to curves from numerical (finite element or finite difference) analyses. The material analyzed in the paper is shown to be strain-softening, with the initial cohesion degrading to zero on development of plastic shear strains.

An Effective Stress Based Constitutive Model on the Behavior under $K_0$ Condition ($K_0$조건하 거동에 대한 유효응력 구성모델)

  • Oh, Se-Boong;Kim, Wook;Park, Hui-Beom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.121-128
    • /
    • 2004
  • A constiutive model was proposed in order to model dilatancy under $K_0$ conditions. The model includes an anisotropic hardening rule with bounding surface and hypothetical peak stress ratio and dilatancy function which are dependent on a state parameter. The triaxial stress-strain relationship under $K_0$ conditions was calculated reasonably by the proposed model. In particular the model could consistently predict dilatancy in volume change, softening with peak strength and small strain behavior.

  • PDF

Finite Element Analysis on Concrete Fracture using Homogenized Crack Model (혼합균열모델을 적응한 콘크리트 파괴의 유한요소해석)

  • 송하원;방춘석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.137-144
    • /
    • 2003
  • Since quasi-brittle material like concrete shows strain localization behavior accompanied by strain softening, a numerical drawback such as mesh sensitivity is appeared in the finite element analysis. In this study, a homogenized crack model which overcomes the drawback and considers rate discontinuity in the constitutive equation is proposed for modeling of cracking in concrete and its propagation in strain softening regime. Then, a series of finite element analysis of the concrete under various loading conditions has been performed. From comparison of analysis results with experimental data, it is shown that failure behavior due to localized cracking of concrete under both compressive loading condition and tensile loading condition is well predicted by the homogenized crack model.

  • PDF

Recrystallization Controlled Deformation of AISI 4140 (AISI 4140 강재의 재결정 제어변형)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.135-139
    • /
    • 1999
  • The static softening behavior of AISI 4140 could be characterized by the hot torsion test in the temperature ranges of 10$0^{\circ}C$~120$0^{\circ}C$ and strain rate ranges of 0.05/sec~5/sec. Deformation efficiency which was based on dynamic materials model was calculated from flow stress curves obtained continuous deformation. Interrupted deformation was performed with 2 pass deformation in the pass strain ranges of 0.25{{{{ epsilon _p}}}} ~3{{{{ epsilon _p}}}} and interrupted time ranges of 0.5~100sec. The dependences of process variables pass strain ({{{{ epsilon _i}}}}) stain rate ({{{{ {. } atop {$\varepsilon$ } }}}}) temperature (T) and interpass time ({{{{ {t }_{i } }}}}) on static recrystallization (SRX) and metadynamic recrystallization .(MDRX) could be indicidually predicted from the modified Avrami's equations. Comparison of the softening kinetics between MDRX and SRX showed that the rate of MDRX was more rapid than that of SRX for the same deformation variables. Controlled multipass deformations were performed using deformation efficiency static and metadynamic recrystallization of AISI 4140.

  • PDF

New Approach for Nonlinear Analysis of Reinforced Cconcrete Fames (철근 콘크리트 골조 비선형 해석의 새로운 기법)

  • 김진근;이태규
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.119-127
    • /
    • 1992
  • The entire nonlinear behavior of reinforced concrete frames up to collapse, is analyzed by the displacement control method and the combined layered and nonlayered method. All of the rigidities of section are calculated approximately by a sum over all the layers for the layered method, are used the integral values over the cross section area for the nonlayered method. The spurious sensitivity to the chosen element size in the result of analysis by finite element method for the materials with strain-softening can be overcome by modifying the strain distribution based on the concept of fracture energy at plastic hinge considering the applied axial load.

  • PDF

An Experimental Study on Anisotropic Tensile Properties of AZ31 Mg Alloy (AZ31B 마그네슘 합금의 인장특성 및 이방성의 실험적 연구)

  • Kim, S.H.;Lee, H.W.;Lee, G.A.;Kim, G.T.;Choi, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.254-257
    • /
    • 2007
  • In this paper, anisotropic tensile properties of the AZ31B Mg-alloy sheet are obtained with the tensile test at elevated temperatures. Change of microscopic structures and the hardness is inspected after the solution heat treatment process in order to confirm the micro-structural stability of the used sheet metal. Results obtained from tensile tests show that it is very difficult to apply the conventional modeling scheme with the assumption of strain hardening to the forming analysis of the magnesium alloy sheet which shows the strain-softening behavior at the elevated temperature.

  • PDF