• Title/Summary/Keyword: Strain holding test

Search Result 20, Processing Time 0.034 seconds

Study on the Hydrogen Delayed Fracture Property of TRIP Steel by Slow Strain Rate Testing Method (일정 변형률 시험에 의한 TRIP강의 수소 지연파괴 특성연구)

  • Cho, J.H.;Lee, J.K.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.131-135
    • /
    • 2011
  • The demands of high-strength steel have been steadily increased to reduce the weight of vehicles. Although the TRIP steel has been the promising candidate material for the purpose, high strength hinders the application due to the susceptibility to hydrogen delayed fracture in the corrosive environment. Moreover, the testing method was not specified in the ISO standards. In this work, the test method to evaluate the susceptibility of hydrogen delayed fracture was studied by slow strain rate testing technique. The four test experimental parameters were studied : strain rate, hydrogen charging time, holding time after hydrogen charging, and holding time after cadmium plating. The steel was fractured by hydrogen in case the strain rate was in the range of $1{\times}10^{-4}{\sim}5{\times}10^{-7}/sec$. It was confirmed that the slow strain rate test is effective method to evaluate the susceptibility to hydrogen delayed fracture. The holding time over 24 hrs after hydrogen charging, nullified the hydrogen effect, that is, the specimen was no more susceptible to hydrogen after 24 hrs even though the specimen was fully hydrogen-charged. Moreover, cadmium electroplating could not prevent from diffusing out the hydrogen from the steel in the experiment. The effective experimental procedures were discussed.

Determination of Horizontal Coefficient of Consolidation from the Self-boring Pressuremeter Holding Test by Considering Pore Pressure Dissipation Trend (간극수압 소산경향을 고려한 자가굴착식 프레셔메터로부터의 수평압밀계수 결정법)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.151-159
    • /
    • 2004
  • This paper describes a systematic way of identifying the horizontal coefficient of consolidation of clayey soil by applying an optimization technique to the early part of dissipation data measured from the self-boring pressuremeter strain holding test. An analytical solution developed by Randolph & Wroth (1979) was implemented in normalized form to express the build-up of excess pore pressures as a function of the rigidity index and subsequent dissipation of excess pore pressures around a pressuremeter Horizontal coefficient of consolidation was determined by minimizing the differences between theoretical and measured excess pore pressure curves over 50% degree of dissipation range using optimization technique. The effectiveness of the proposed back-analysis method was examined against the real fled performances obtained from pressuremeter strain holding tests at Gimje and Yangsan site. It is shown that the proposed back-analysis method can evaluates the rational horizontal coefficient of consolidation, which is similar to those obtained from the piezocone dissipation test. Furthermore, proposed method can evaluate appropriate coefficient of consolidation for soil under partially drained condition.

An Optimization Method for Self-Boring Pressuremeter Holding Test to Determine a Horizontal Coefficient of Consolidation under Partial Drained Soil Conditio (부분배수가 발생하는 지반의 수평압밀계수 결정을 위한 자가굴착식 프레셔메터 유지시험의 최적화 해석법)

  • Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.370-375
    • /
    • 2005
  • This paper describes a systematic way of identifying the horizontal coefficient of consolidation for clayey soil under undrained condition and silty soil under partial drained condition by applying an optimization technique to the early part of dissipation data measured from the self-boring pressuremeter strain holding test. An analytical solution developed by Randolph & Wroth (1979) was implemented in normalized form to express the build-up and dissipation of excess pore pressures around a pressuremeter as a function of the rigidity index. Horizontal coefficient of consolidation was determined by minimizing the differences between theoretical and measured excess pore pressure curves using optimization technique. It was found that the proposed optimization technique can evaluate in-situ horizontal coefficient of consolidation rationally, which is similar with that obtained from the piezocone dissipation test. Furthermore, proposed method can evaluate appropriate coefficient of consolidation for soil under partially drained condition.

  • PDF

Determination of Consolidation Characteristics of Clayey Soils from the Self-boring Pressuremeter Test (자가굴착식 프레셔미터 시험을 이용한 점성토의 압밀특성 산정)

  • 장인성;정충기;김명모;조성민
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.87-96
    • /
    • 2002
  • The strain holding test(SHT) or the sell-boring pressuremeter test(SBPT) has been effectively utilized to determine the horizontal coefficient of consolidation$(c_h)$ of clayey soils. However, a commonly used procedure proposed by Clarke et al.(1979) can lead to an erroneous estimation of $(c_h)$ because of its simplified assumptions. This paper deals with numerical analyses based on realistic test conditions of the generally accepted testing procedure, and .using the most commonly used type of pressuremeter. The effects of pressuremeter geometry, partial drainage during cavity expansion, and the cavity strain level for the holding test are investigated with the radial distributions of the initial excess pore pressure and their dissipation rate. Based on the results of the numerical analyses, the curve of the time factor for the 50% degree of consolidation($T_{50}$) needed to estimate $(c_h)$ is proposed. Comparisons are made between $(c_h)$ values estimated from the SHT or the SBPT and those obtained from other in situ and laboratory tests performed at two sites in Korea. These results suggest the improved capability of the $T_{50}$ curve proposed herein.

The Effect of globule size on the Mechanical Properties in Reheating Process of Aluminium Alloys (알루미늄소재의 재가열 공정에서 구상화의 크기가 기계적 성질에 미치는 영향)

  • 박상문;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • One of the important steps on semi-solid forming Is the reheating process of raw materials to the semi-solid state. This Process is not only necessary to achieve the required SSM billet state, but also to contro1 the microstructure of the billet. In reheating process, the globule size is determined by the holding time of last heating stage. Therefore, some experiments to investigate the relationship between the mechanical properties and the holding time in the last heating stage was performed. The alloys used in this experiment were 357, 319 and A390 alloys. The experiments of reheating were performed by using an Induction heating system with the capacity of 50kw. This paper shows the evolution of the microstructure according to the holding time of last reheating stage. Furthermore, to evaluate the effect of globule size controlled by holding time in last heating stage uniaxial tension test was performed. The strain-stress curves were plotted according to the holding time.

Characteristic responses of critical current in REBCO coated conductor tapes under tensile/compressive bending strains at 77 K

  • Diaz, Mark Angelo;Shin, Hyung Seop;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.31-35
    • /
    • 2018
  • When REBCO coated conductors (CCs) are applied to superconducting devices such as coils and magnets, they are subjected to deformation in various modes such as compression/tension bending, uniaxial/transverse tension and torsion. Despite outstanding performances by REBCO CC tapes, their electromechanical properties have been evaluated primarily under uniaxial tension, therefore data about the critical current ($I_c$) response in the compressive strain region are lacking. In this study, the characteristic responses of $I_c$ in REBCO CC tapes under bending strains in the range from tensile to compressive were evaluated. The springboard bending beam was used, wherein the CC tape sample was soldered onto the surface of the springboard. A Goldacker-type bending test rig, which lacks a support holding the sample during testing, was used as a comparator. Degradation in $I_c$ behaviors, including strain sensitivity, in differently processed REBCO CC tapes were examined based on the test rig used.

Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Processes (Part1:Experiment) (박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발(1부: 실험))

  • Lee, Jae-U;Keum, Yeong-Tak
    • Transactions of Materials Processing
    • /
    • v.7 no.1
    • /
    • pp.3-11
    • /
    • 1998
  • During the forming process of sheet metals, the drawbead in the die face controls a restraining force so that the sheet flows into the die cavity with tension. In order to investigate a drawgbead restraining force and a pre-strain just after drawbeads which are essential in the finite element analysis of form-ing processes, the friction test and drawing test are employed. The experiments performed with a cir-cular bead stepped bead double circular bead and circular-and-stepped bead in the various forming conditions and bead sizes show that the restraining force varies linearly with the blank holding force. bead radius blank thickness and friction but the pre-strain nonlinearly does with them.

  • PDF

Evaluation of the Springback Characteristics for Automotive Steel Sheets by the S-Rail Forming Test (S-레일 시험을 통한 자동차용 판재의 스프링백 특성 평가)

  • Kwon, ln-Jae;Rim, Jae-Kyu;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.287-294
    • /
    • 2001
  • This study is aimed to evaluate the springback characteristics of automotive steel sheets through the S-rail forming test and to find the process condition under which springback can be reduced. Die set for the S-rail test has been made according to the dimension of the NUMISHEET '96 benchmark model. Experiment and finite element analysis have been performed on two kinds of automotive steel sheets: mild steel, SPCEN and high strength steel, SPRC. The test results show that the amount of springback is larger on the high strength steel SPRC than on the mild steel SPCEN, and decreases with increasing blank holding force as the case of material flow. And the reduction of friction has the effect of lowering the blank holding force in view of punch force and material flow. It is shown that the strain distribution over the whole specimen and along the specified sections calculated from the finite element analysis coincides with the measured data except local differences.

  • PDF

Identification of the Bulk Behavior of Coatings by Nanoindentation Test and FE-Simulation and Its Application to Forming Analysis of the Coated Steel Sheet (나노인덴테이션 시험과 유한요소해석을 이용한 자동차 도금 강판의 도금층 체적 거동결정 및 성형해석 적용)

  • Lee, Jung-Min;Lee, Kyoung-Su;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1425-1432
    • /
    • 2006
  • Coating layers on a coated sheet steel frequently affect distributions of strain rate of sheets and deteriorate the frictional characteristics between sheets and tools in sheet metal forming. Thus, it is important to identify the deformation behavior of these coatings to ensure the success of the sheet forming operation. In this study, the technique using nano-indentation test, FE-simulation and Artificial Neural Network(ANN) were proposed to determine the power law stress-strain behavior of coating layer and the power law behavior of extracted coating layers was examined using FE-simulation of drawing and nano-indentation process. Also, deep drawing test was performed to estimate the formability and frictional characteristic of coated sheet, which was calculated using the linear relationship between drawing force and blank holding force obtained from the deep drawing test. FE-simulations of the drawing process were respectively carried out for single-behavior FE-model having one stress-strain behavior and for layer-behavior FE-model which consist of coating and substrate separately. The results of simulations showed that layer-behavior model can predict drawing forces with more accuracy in comparison with single-behavior model. Also, mean friction coefficients used in FE-simulation signify the value that can occur maximum drawing force in a drawing test.

Precipitation Hardening by Holding After Simulated Complete Firing in a Metal-Ceramic Alloy of Pd-Au-Ag-Sn System (금속-세라믹용 Pd-Au-Ag-Sn계 합금의 모의소성 후 계류에 따른 석출경화)

  • Kim, Min-Jung;Shin, Hye-Jung;Kwon, Yong-Hoon;Kim, Hyung-Il;Seol, Hyo-Joung
    • Korean Journal of Dental Materials
    • /
    • v.43 no.4
    • /
    • pp.343-349
    • /
    • 2016
  • This experiment was carried out to examine whether the post-firing heat treatment is effective in increasing the hardness of metal-ceramic alloy of the Pd-Au-Ag-Sn system. Precipitation hardening by holding at $600^{\circ}C$ after simulated complete porcelain firing in a metal-ceramic alloy of the Pd-Au-Ag-Sn system was examined by observing the change in hardness, crystal structure, and microstructure using a hardness test, X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The hardness of the alloy increased apparently by holding the specimen at $600^{\circ}C$ for 30 min after simulated complete porcelain firing. The formation of fine grain interior precipitates during holding at $600^{\circ}C$ caused the formation of lattice strain in the grain interior, resulting in apparent hardening. The faster cooling rate (stage 0) during simulated complete porcelain firing resulted in more effective precipitation hardening during holding at $600^{\circ}C$. From the above results, an appropriate post-firing heat treatment, such as holding at $600^{\circ}C$ for 30 min after complete porcelain firing may increase the durability of metal-ceramic prostheses composed of Pd-Au-Ag-Sn alloy.