• Title/Summary/Keyword: Strain hardening behavior

Search Result 421, Processing Time 0.025 seconds

Characteristics of Pre-Heat Treated Steel for Application to Forging (선조질강 소재의 단조공정 측면에서의 특징)

  • Eom, J.G.;Li, Q.S.;Jang, S.M.;Abn, S.T.;Son, Y.H.;Hyun, S.W.;Kim, H.;Yoon, D.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.453-457
    • /
    • 2009
  • In this paper, plastic deformation behaviors of ESW105 and SCM435 steels are revealed by simulations and experiments. ESW105 is the special pre-heat-treated steel characterized by high initial yield strength and negligible strain-hardening behavior. The flow stresses of the two steels for large stain are calculated from tensile tests. Axial and lateral compressions of cylindrical bars are tested and simulated and the deformed shapes are compared to characterize the plastic deformation behaviors of the two materials. A forward extrusion process of a cylindrical bar is also simulated to reveal the difference. It has been shown that there are pretty much difference in plastic flow between ESW105 and SCM435 which causes from the difference in strain-hardening capability, implying that the experience-oriented design rules for common commercial materials may lead to failure in process design when the new material of ESW105 is applied without consideration of its plastic deformation behavior.

Characteristics of Pre-Heat Treated Steel for Application to Forging (선조질강 소재의 단조공정 측면에서의 특징)

  • Eom, J.G.;Li, Q.S.;Jang, S.M.;Ahn, S.T.;Son, Y.H.;Hyun, S.W.;Kim, H.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.48-51
    • /
    • 2009
  • In this paper, plastic deformation behaviors of ESW105 and SCM435 steels are revealed by simulations and experiments. ESW105 is the special pre-heat-treated steel characterized by high initial yield strength and negligible strain-hardening behavior. The flow stresses of the two steels for large stain are calculated from tensile tests. Axial and lateral compressions of cylindrical bars are tested and simulated and the deformed shapes are compared to characterize the plastic deformation behaviors of the two materials. A forward extrusion process of a cylindrical bar is also simulated to reveal the difference. It has been shown that there are pretty much difference in plastic flow between ESW105 and SCM435 which causes from the difference in strain-hardening capability, implying that the experience-oriented design rules for common commercial materials may lead to failure in process design when the new material of ESW105 is applied without consideration of its plastic deformation behavior.

  • PDF

Dynamic Constitutive Equations of Auto-body Steel Sheets with the Variation of Temperature (II) - Flow Stress Constitutive Equation - (차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (II) - 온도에 따른 동적 구성방정식 -)

  • Lee, Hee-Jong;Song, Jung-Han;Park, Sung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.182-189
    • /
    • 2007
  • This paper is concerned with the empirical flow stress constitutive equation of steel sheets for an auto-body with the variation of temperature and strain rate. In order to represent the strain rate and temperature dependent behavior of the flow stress at the intermediate strain rates accurately, an empirical hardening equation is suggested by modifying the well-known Khan-Huang-Liang model. The temperature and strain rate dependent sensitivity of the flow stress at the intermediate strain rate is considered in the hardening equation by coupling the strain, the strain rate and the temperature. The hardening equation suggested gives good correlation with experimental results at various intermediate strain rates and temperatures. In order to verify the effectiveness and accuracy of the suggested model quantitatively, the standard deviation of the fitted result from the experimental one is compared with those of the other two well-known empirical constitutive models such as the Johnson-Cook and the Khan-Huang-Liang models. The comparison demonstrates that the suggested model gives relatively well description of experimental results at various strain rates and temperatures.

Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path (응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성)

  • 정진섭;김찬기;박을축
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

Cyclic Stress-strain Hardening Model of AC4C-T6 Alloy at Cryogenic Temperature (극저온 상태에서 AC4C-T6 의 가공 경화 모델 결정에 관한 연구)

  • Lee, Jae-Beom;Kim, Kyung-Su;Lee, Jang-Hyun;Yoo, Mi-Ji;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.498-509
    • /
    • 2009
  • Present study is concerned with the simulation of plasticity models for the cyclic stressstrain behavior of aluminum alloy AC4C-T6 that can be used for primary materials of LNG cargo pump. Material model of cyclic hardening and plasticity for aluminum alloy AC4C-T6 was investigated through experiments and numerical simulations. Monotonic tensile and cyclic tension-compression test under symmetric load cycles was performed at both room temperature and cryogenic temperature of $-165^{\circ}C$. Based on the experimental data plastic hardening models were evaluated for isotropic/kinematic/combined hardening. FEA (Finite Element Analysis) models which describe the cyclic stress-strain relationship were evaluated for the simulation of plasticity. An appropriate hardening model is proposed comparing the results of FEA with those of experiments.

A Prediction of Behavior of Compacted Granite Soils Based on the Elasto-Plastic Constitutive Model (탄,소성 구성모델을 이용한 다짐화강토의 응력-변형률 거동예측)

  • 이강일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.148-158
    • /
    • 1998
  • The aims of this study are to evaluate the application on the stress-strain behavior of granite Soil using Lade's double work hardening constitutive model based on the theories of elasticity and plasticity. From two different sites of construction work, two disturbed and compacted weathered granite samples which are different in partical size and degree of weathering respectively were obtained. The specimen employed were sampled at Iksan and Pochon in order to predict the constitutive model. Using the computer program based on the regression analysis, 11 soil parameters for the model were determined from the simple tests such as an isotropic compression-expansion test and a series of drained conventional triaxial tests. In conclusion, it is shown that Lade's double work hardening model gives the good applicability for processing of stress-strain, work-hardening, work-softening and soil dilatancy. Therefore, this model in its present form is applicable to the compacted decomposed granite soil.

  • PDF

Ratcheting behavior of 90° elbow piping under seismic loading

  • Chen, Xiaohui;Huang, Kaicheng;Ye, Sheng;Fan, Yuchen;Li, Zifeng
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.489-499
    • /
    • 2019
  • Elastic-plastic behavior of nuclear power plant elbow piping under seismic loads has been conducted in this study. Finite element analyses are performed using classical Bilinear kinematic hardening model (BKIN) and Multilinear kinematic hardening model (MKIN) as well as a nonlinear kinematic hardening model (Chaboche model). The influence of internal pressure and seismic loading on ratcheting strain of elbow pipe is studied by means of the three models. The results found that the predicted results of Chaboche model is maximum, closely followed by the predicted results of MKIN model, and the minimum is the predicted results of BKIN model. Moreover, comparisons of analysis results for each plasticity model against predicted results for a equivalent cyclic loading elbow component and for a simplified piping system seismic test are presented in the paper.

Numerical Analysis of ECC Uniaxial Tension Behavior (ECC의 1축 인장 거동 해석)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kwon, Seung-Hee;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.917-920
    • /
    • 2008
  • ECC is a special kind of high performance cementititous composite which exhibits typically more than 2% tensile strain capacity by bridging microcracks at a crack section. Therefore, micromechanics should be adopted to obtain multiple cracking and strain hardening behavior. This paper propose a linear elastic analysis method to simulate the multiple cracking and strain hardening behavior of ECC. In an analysis, the stress-crack opening relation modified considering the orientation of fibers and the number of effective fibers is adopted. Furthermore, to account for uncertainty of materials and interface between materials, the randomness is assigned to the tensile strength(${\sigma}_{fci}$), elastic modulus($E_{ci}$), peak bridging stress(${\sigma}_{Bi}$) and crack opening at peak bridging stress(${\delta}_{Bi}$), initial stress at a crack section due to chemical bonding, (${\sigma}_{0i}$), and crack spacing(${\alpha}_cX_d$). Test results shows the number of cracking and stiffness of cracked section are important parameters and strain hardening behavior and maximum strain capacity can be simulated using the proposed method.

  • PDF

Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Bauschinger Effect (단순전단 시험법 구축 및 바우싱거효과를 고려한 경화거동 예측)

  • Kim, Dongwook;Bang, Sungsik;Kim, Minsoo;Lee, Hyungyil;Kim, Naksoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1239-1249
    • /
    • 2013
  • In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

Study on Mechanical Behavior of a Pre-Heat Treated Steel of ESW95 (선조질강 ESW95의 기계적 성질에 관한 연구)

  • Park, J.T.;Eom, J.G.;Kim, J.H.;Youn, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.439-443
    • /
    • 2008
  • We investigate the mechanical behavior of a pre-heat treated steel of ESW95, which is being used for automotive parts including tie-rods to save manufacturing cost and enhance product quality. SCM435 is also investigated to reveal the characteristics of the pre-heat treated steel tested. AFDEX/MAT is used to extract the true stress-strain curve over the large strain with higher accuracy. It has been found that ESW95 has very week strain-hardening behavior which can be negligible compared with SCM435 and that the initial yield strength is quite high and the toughness of ESW95 reaches nearly 75% of SCM435. ESW95 is characterized by the weak strain-hardening behavior and high yield strength that can be lead to minimization of post-processing including heat treatment and straightening. ESW95 and SCM435 are also compared by applying them to ball-stud forging by computer simulation. It is expected that a great deal of change may take place in production as well as in service if the pre-heated steels are adopted.

  • PDF