• 제목/요약/키워드: Strain gauge experiment

검색결과 71건 처리시간 0.028초

Influence of thickness and incisal extension of indirect veneers on the biomechanical behavior of maxillary canine teeth

  • Costa, Victoria Luswarghi Souza;Tribst, Joao Paulo Mendes;Uemura, Eduardo Shigueyuki;de Morais, Dayana Campanelli;Borges, Alexandre Luiz Souto
    • Restorative Dentistry and Endodontics
    • /
    • 제43권4호
    • /
    • pp.48.1-48.13
    • /
    • 2018
  • Objectives: To analyze the influence of thickness and incisal extension of indirect veneers on the stress and strain generated in maxillary canine teeth. Materials and Methods: A 3-dimensional maxillary canine model was validated with an in vitro strain gauge and exported to computer-assisted engineering software. Materials were considered homogeneous, isotropic, and elastic. Each canine tooth was then subjected to a 0.3 and 0.8 mm reduction on the facial surface, in preparations with and without incisal covering, and restored with a lithium disilicate veneer. A 50 N load was applied at $45^{\circ}$ to the long axis of the tooth, on the incisal third of the palatal surface of the crown. Results: The results showed a mean of $218.16{\mu}strain$ of stress in the in vitro experiment, and $210.63{\mu}strain$ in finite element analysis (FEA). The stress concentration on prepared teeth was higher at the palatal root surface, with a mean value of 11.02 MPa and varying less than 3% between the preparation designs. The veneers concentrated higher stresses at the incisal third of the facial surface, with a mean of 3.88 MPa and a 40% increase in less-thick veneers. The incisal cover generated a new stress concentration area, with values over 48.18 MPa. Conclusions: The mathematical model for a maxillary canine tooth was validated using FEA. The thickness (0.3 or 0.8 mm) and the incisal covering showed no difference for the tooth structure. However, the incisal covering was harmful for the veneer, of which the greatest thickness was beneficial.

포장가속시험을 이용한 아스팔트 안정처리층의 피로모형 개발 (Development of Fatigue Model for Asphalt Black Base by Accelerated Pavement Testing)

  • 여인수;서영찬;문성호
    • 한국도로학회논문집
    • /
    • 제9권4호
    • /
    • pp.11-20
    • /
    • 2007
  • 본 논문에서는 포장가속시험기를 이용하여 아스팔트 안정처리층의 피로모형을 개발하여 기존의 실내실험결과와의 상관관계를 분석하였다. 아스팔트 안정처리층의 피로모형은 Miner(1945)의 누적파손(Cumulative Damage)가설을 적용하였다. 포장가속시험에 사용된 아스팔트 안정처리층은 골재최대입경 25mm(BB-3)의 재료를 사용하였다. 포장가속시험결과 피로모형의 변수인 포장하부의 최대인장응력은 하중재하회수가 증가할수록 증가하는 것을 알 수 있었으며 포장층의 탄성계수는 점차 작아지는 것을 알 수 있었다. 아스팔트 피로모형의 기본식 $N_f=k_1(\frac{1}{\epsilon})^{k_2}$에서 변형률계를 통하여 얻은 인장변형률을 통하여 $k_1=1.29{\times}10^{-6}$, $k_2=3.02$의 값을 도출하였으며, 같은 인장변형률에서의 피로수명은 실내실험을 통한 모형보다 크게 나타났다. 또한, 비파괴실험인 FWD를 이용하여 포장의 잔존수명을 추정하는 논리를 개발하였다.

  • PDF

디지털 방식의 인접면 접촉강도 측정장치의 개발 및 평가 (EVALUATION AND DEVELOPMENT OF DIGITAL DEVICE FOR MEASURING PROXIMAL TOOTH CONTACT TIGHTNESS)

  • 최우진;김경화;김진아;강동완;오상호
    • 대한치과보철학회지
    • /
    • 제45권5호
    • /
    • pp.687-695
    • /
    • 2007
  • Statement of problem: The proper contact relation between adjacent teeth in each arch plays an important role in the stability and maintenance of the integrity of the dental arches. Proximal contact has been defined as the area of a tooth that is in close association, connection, or touch with an adjacent tooth in the same arch. Purpose: The aim of this study was to develop a digital device for measuring the proximal tooth contact tightness by pulling a thin stainless steel strip (2mm wide, 0.03mm thick) inserted between proximal tooth contact. Material and method: This device consists of measuring part, sensor part, motor part and body part. The stainless steel strip was connected to a stain gauge. The strain gauge was designed to convert the frictional force into a compressive force. This compressive force was detected as a electrical signal and the electrical signal was digitalized by a A/D converter. The digital signals were displayed by a micro-processor. The pulling speed was 8mm/s. Results: For testing reliability of the device in vivo, two healthy young adults (A, B) participated in this experiment. The tightness of proximal tooth contact between the second premolar and the first molar of mandible (subject A) and maxilla (subject B) was measured fifteen times for three days at rest. We double-checked the accuracy of the device with a Universal Testing Machine. Output signals from the Universal Testing Machine and the measuring device were compared. Regression analysis showed high linearity between these two signals. In vivo test, no significant differences were found between measurements. Conclusion: This device has shown to he capable of producing reliable and reproducible results in measuring proximal tooth contact. Therefore, it was considered that this device was appropriate to apply clinically.

스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측 (Torsional Stress Prediction of Turbine Rotor Train Using Stress Model)

  • 이혁순;유성연
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.850-856
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

삼연모먼트정리의 매트릭스산법에 의한 박용추진축계 배치계산에 관한 연구 (A Study on the Propulsion Shaft Alignment Calculation by the Matrix Method of Three-Moment Theory)

  • 문덕홍;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.20-27
    • /
    • 1981
  • The alignment of propulsion shaft systems by the fair curve method has been developed over the past twenty years and in recent years its basic problems have been almost solved. At the present time, studies on introducing actual conditions are being undertaken. In a fair curve alignment, its aim is to achieve a stable shaft system which will be relatively insensitive to misalignment or the influence of external factors such as thermal variations due to the sunshine, speed change, etc. The key point of fair curve alignment is the calculations of reactions in the straight support and reaction influence numbers. The present authors have developed those calculating method by the matrix method of the three-moment theorem. The fair curve alignment is based on the analysis of propulsion shaft system which is assumed as a continous beam on multiple support points. The propeller shaft is divided into several elements. For each element, the nodal point equation is derived by the three-moment theorem. Reaction of supporting points of straight shaft and reaction influence numbers are calculated by the matrix calculation of each nodal point equation. It has been found that results of calculation for the model shaft agree well with those of experiment which had been measured by the strain gauge method. Results of calculation for the actual propulsion shafting of the steam turbine had been compared also with those of Det norske Vertas.

  • PDF

일체식교량의 접속슬래브 연결철근 형상에 따른 연결부 구조거동에 대한 실험연구 (Experimental Study on the Structural Behavior of Typical Bar Connections of Approach Slab in the Integral Abutment Bridge)

  • 유성근;김나연;김호섭;김현기;김영호
    • 복합신소재구조학회 논문집
    • /
    • 제5권4호
    • /
    • pp.24-35
    • /
    • 2014
  • An experimental study on the structural behavior of connection types between approach slab and integral abutment has been done for three typical bar connections. Typical hinge style reinforcing bar detail for its connection is preferred in order to accommodate rotation of the approach slab among engineers. However, the straight horizontal bars can be used as connection detail accomodate structural capacity. Total six specimens with three types of rebar detail are tested for direct tensile and bending load. The characteristic structural behaviors are carefully monitored and all the strain gauge data obtained are analyzed. It is shown that the structural performance of all the specimens well exceed its design allowance. Several design suggestions are given based on careful reviews on the experiment.

유연 매니퓨레이터의 피동적인 힘 제어에 관한 연구 (A Study on Passive Force Control of a Flexible Manipulator)

  • 김진수
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.209-216
    • /
    • 1999
  • 일반적으로 힘 제어는 힘 센서의 사용 여부에 따라 능동적 힘 제어와 피동적 힘 제어로 분류시킬 수 있다. 능동적 힘 제어는 힘 세서를 이용하여 구속력을 목표한 힘에 근접하도록 제어한다. 유연 매니퓨레이터의 함수(위치, 속도, 가속도)를 이용하여 일정한 힘에 근접하도록 제어한다. 유연 매티퓨레이터에 있어서 링크 선단의 강성 증대는 힘 제어뿐만이 아니라, 링크의 진동을 크게 유발함으로서 위치 제어에 불리하게 작용한다. 주로 사용되고 있는 힘 센서는 많은 변형 게이지(strain gauge)로 구성되어 있다. 유연 매니퓨레이터 또한 링크 선단의 변형을 측정하기 위해 변형 게이지를 사용하고 있다. 본 논문에서는 이점에 착안하여, 유연 매니퓨레이터의 선단의 탄성 변형을 측정하기 위해 장착한 변형 게이지를 이용한 위치/힘 제어를 제안한다. 먼저, 유연 매니퓨레이터의 집중 정수 모델로부터 링크의 탄성 변형과 구속력 관계를 도출한 후 이 관계를 이용하여 3차원 실험 유연 매니퓨레이터를 실시간 위치/힘 제어 실험을 수행하였다. 또한 범용 동력학 해석 소프트웨어인 ADAMS FEM 을 이용하여 해석하였다. 마지막으로, 실험 결과와 해석 결과를 비교 분석하여 본 논문에서 제안한 유연 매니퓨레이터의 위치/힘 제어의 타당성을 입증시켰다.

  • PDF

샤시부품 동특성 해석을 위한 전차량 해석모델 개발에 관한 연구 (A Study on the Development of Vehicle Dynamic Model for Dynamic Characteristics Analysis of Chassis Parts)

  • 배철용;권성진;김찬중;이봉현;나병철
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.958-966
    • /
    • 2007
  • This study presents full vehicle dynamics model for the dynamic characteristic analysis of chassis parts which are suspension and brake system. This vehicle dynamics model is appled to kinematics and quasi-static analysis for each chassis part. In order to develop the vehicle dynamics model, the parameters of each chassis element part which are bush, spring and damper are measured by experiment. Also the wheel forces and moments of 6 DOF are measured at each wheel center. These data are applied to input parameter for vehicle dynamics model. And the verification of the developed model is achieved to comparison with the experimental force data of spring, trailing arm and assist arm by using the load response by strain gauge. These experimental force data are acquired by road test at event surfaces of P/G which are belgian and chuck holes roads.

최대 수의적 수축 동안 뒤넙다리근 근력 반복성의 남녀 차이 (Sex differences in repeatability of measurement for hamstring strength during maximal voluntary contractions)

  • 임우택
    • 대한물리치료과학회지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 2020
  • Background: This study aimed to examine the repeatability of hamstring strength during maximal voluntary contractions (MVCs) and to examine the sex difference. Design: Quasi-experiment design. Methods: The study recruited 23 healthy young individuals as participants. Hamstring flexibility was measured before and after MVCs by active knee extension test. Five trials of MVCs were performed, and hip extension forces were measured using a strain gauge during MVCs. Repeatability was confirmed by intraclass correlation coefficient (ICC) and coefficient of variation, and the difference between male and female participants was confirmed by independent samples t-test. Results: The forces measured during MVCs were significantly different between men and women over five trials. We observed the minimum and maximum force production at the first and fifth trial of MVCs in both men and women. Excellent to moderate reliability of the hamstring strength during MVCs was found in men (ICC range, 0.70-0.98) and women (ICC range, 0.66-0.90). There was no significant difference in hamstring flexibility between men and women. Conclusion: In clinical settings, we recommend excluding the first trial of MVCs in both men and women. Additionally, performing at least three trials of MVCs would be useful to improve the reliability of the baseline measures in women.

스트레스 모델을 이용한 터빈 축계의 비틀림 응력 예측 (Torsional stress prediction of turbine rotor train using stress model)

  • 이혁순;유성연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.862-867
    • /
    • 2013
  • Torsional interaction between electrical network phenomena and turbine-generator shaft cause torsional stress on turbine-generator shaft and torsional fatigue fracture on vulnerable component, but the prediction of the torsional stress is difficult because the torsional stress is occurred instantly and randomly. Therefore continuous monitoring of the torsional stress on turbine-generator shaft is necessary to predict the torsional fatigue, but installing the sensors on the surface of the shaft directly to monitor the stress is impossible practically. In this study torsional vibration was measured using magnetic sensor at a point of turbine-generator rotor kit, the torsional stress of whole train of rotor kit was calculated using rotor kit's stress model and the calculated results were verified in comparison with the measured results using strain gauge at several point of turbine-generator rotor kit. It is expected that these experiment results will be used effectively to calculate the torsional stress of whole train of turbine-generator rotor in power plants.

  • PDF