• 제목/요약/키워드: Strain energy function

검색결과 200건 처리시간 0.025초

핵연료봉의 PCI파손에 영향을 미치는 인자들의 거동분석 (The Behaviors of the Material Parameters Affecting PCI Induced-Fuel Failure)

  • Sim, Ki-Seob;Woan Hwang;Sohn, Dong-Seong;Suk, Ho-Chun
    • Nuclear Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.241-245
    • /
    • 1988
  • 핵연료봉의 PCI 파손은 원자로의 운전제한과 밀접한 관계가 있기 때문에, 출력급증 조건에서 핵연료봉의 PCI 파손을 지배하는 파손인자들의 거동을 검토하는 것은 매우 중요하다. 본 연구에서는 피복관에서의 원주방향 응력, 원주방향 변형도, 원주방향 주름 높이, 크립 변형율 및 변형도 에너지등의 파손인자들에 대한 거동특성을 핵연료봉 성능해석용 전산코드인 FEMAXI-IV를 이용하여 출력급증량 및 출력증가율의 운전인자들의 함수로 검토하였다.

  • PDF

Fatigue Strength Assessment of Spot-Welded Lap Joint Using Strain Energy Density Factor

  • Sohn, Ilseon;Bae, Dongho
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.44-51
    • /
    • 2001
  • One of the recent issues in design of the spot-welded structure such as the automobile body is to develop an economical prediction method of the fatigue design criterion without additional fatigue test. In this paper, as one of basic investigation for developing such methods, fracture mechanical approach was investigated. First, the Model I, Mode II and Mode III, stress intensity factors were analyzed. Second, strain energy density factor (S) synthetically including them was calculated. And finally, in order to decide the systematic fatigue design criterion by using this strain energy density factor, fatigue data of the ΔP-N(sub)f obtained on the various in-plane bending type spot-welded lap joints were systematically re-arranged in the ΔS-N(sub)f relation. And its utility and reliability were verified by the theory of Weibull probability distribution function. The reliability of the proposed fatigue life prediction value at 10(sup)7 cycles by the strain energy density factor was estimated by 85%. Therefore, it is possible to decide the fatigue design criterion of spot-welded lap joint instead of the ΔP-N(sub)f relation.

  • PDF

신경망을 이용한 열간단조품의 초기 소재 설계 (Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product)

  • Kim, D.J.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.118-124
    • /
    • 1995
  • In the paper, we have proposed a new technique to determine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed to train the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of the neural network. The amount of incomplete filling in the die, load and forming energy as well as effective strain are measured by the rigid-plastic finite element method. This new technique is applied to find the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determining the optimal billet of forging products, further it is usefully adopted to physical modeling for the forging design

  • PDF

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

파동전파특성에 기초한 구조 건전도 모니터링 (Structural Health Monitoring Based on Wave Propagation Characteristics)

  • 김승준;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.311-314
    • /
    • 2007
  • The experimental method of measuring dynamic properties of structures was presented. The method is based on the flexural wave propagation characteristics. Using the method, change in structural dynamic properties due to damage is measured. The crack has much more significant impact on the strain energy than the inertial effects. From this, the sensitivity of the dynamic stiffness on the crack location is estimated by calculating the strain energy. When the wave propagates, the strain and kinetic energies shows cyclic changed over space. The crack that occurred at locations where the wave energy is in the form of the potential energy affected most significantly the wave propagation characteristics. The effects of crack location on the wave propagation were used to determine the crack location.

  • PDF

Elastic-plastic fracture of functionally graded circular shafts in torsion

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.299-318
    • /
    • 2016
  • Analytical investigations were performed of a longitudinal crack representing a cylindrical surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-linear constitutive relations between the shear stresses and shear strains. The fracture was studied in terms of the strain energy release rate. Within the framework of small strain approach, the strain energy release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the crack front. The analytical approach developed was applied to study the fracture in a clamped circular shaft. In order to verify the solution derived, the strain energy release rate was determined also by considering the shaft complimentary strain energy. The effects were evaluated of material properties, crack location and material non-linearity on the fracture behavior. The results obtained can be applied for optimization of the shafts structure with respect to the fracture performance. It was shown that the approach developed in the present paper is very useful for studying the longitudinal fracture in circular shafts in torsion with considering the material non-linearity.

경계조건에 따른 판 구조물의 최적두께분포에 대한 연구 (A Study on the Optimum Thickness Distributions of Plate Structures with Different Essential Boundary Conditions)

  • 이상진;김하룡
    • 한국공간구조학회논문집
    • /
    • 제5권4호
    • /
    • pp.53-59
    • /
    • 2005
  • 이 논문은 경계조건에 따른 판구조물의 최적두께분포 변화에 대한 연구결과를 기술하였다. 본 연구에서는 최소화하고자하는 변형에너지를 목적함수로 하고 구조물의 초기 부피 값을 제약조건으로 사용하였다. 판구조물의 두께분포를 표현하기 위하여 쿤이 개발한 조각 면을 이용하였다. 판의 변형에너지를 정확히 계산하기 위하여 퇴화 쉘 요소를 도입하였으며 반복계산을 통하여 최적의 두께분포를 검색하기 위하여 최적화검색기 DOT를 도입하였다. 마지막으로 경계조건에 따른 판의 최적두께 분포에 대한 정량적인 수치해석결과를 제공하기 위하여 정사각형 판을 최적화에 채용하고 그 결과를 자세히 기술하였다.

  • PDF

Molecular Modeling of Bisphenol-A Polycarbonate and Tetramethyl Bisphenol-A Polycarbonate

  • Kim, Sangil;Juwhan Liu
    • Macromolecular Research
    • /
    • 제9권3호
    • /
    • pp.129-142
    • /
    • 2001
  • To efficiently demonstrate the molecular motion, physical properties, and mechanical properties of polycarbonates, we studied the differences between bisphenol-A polycarbonate(BPA-PC) and tetramethyl bisphenol-A-polycarbonate(TMBPA-PC) using molecular modeling techniques. To investigate the conformations of BPA-PC and TMBPA-PC and the effect of the conformation on mechanical properties, we performed conformational energy calculation, molecular dynamics calculation, and stress-strain curves based on molecular mechanics method. From the result obtained from conformational energy calculations of each segment, the molecular motions of the carbonate and the phenylene group in BPA-PC were seen to be more vigorous and have lower restriction to mobility than those in TMBPA-PC, respectively. In addition, from the results of radial distribution function, velocity autocorrelation function, and power spectrum, BPA-PC appeared to have higher diffusion constant than TMBPA-PC and is easier to have various conformations because of the less severe restrictions in molecular motion. The result of stress-strain calculation for TMBPA-PC seemed to be in accordance with the experimental value of strain-to-failure ∼4%. From these results of conformational energy calculations of segments, molecular dynamics, and mechanical properties, it can be concluded that TMBPA-PC has higher modulus and brittleness than BPA-PC because the former has no efficient relaxation mode against the external deformations.

  • PDF

수소 연료전지 개스킷의 면압에 대한 유한요소 해석 (Finite Element Analysis of Surface Pressure of Hydrogen Fuel Cell Gasket)

  • 전형렬;박수현;주우정;허장욱
    • 한국기계가공학회지
    • /
    • 제21권6호
    • /
    • pp.60-66
    • /
    • 2022
  • The optimal strain energy function was obtained by comparing the results of the analysis using the strain energy functions obtained by uniaxial tensile and equibiaxial tensile tests on gasket materials used in hydrogen fuel cells, with the results measured using a contact pressure measurement sensor. At this time, even when only the uniaxial tensile test was conducted, Yeoh could obtain the most accurate results even by conducting only the uniaxial tensile test. Using this, an analysis of the cross section of the gasket used in stack confirmed a safe contact pressure and no deformation on the separator. In the future, research will be conducted to verify the gasket durability by reliability evaluation.

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.