• 제목/요약/키워드: Strain calculation

검색결과 350건 처리시간 0.021초

고유 변형도법에 의한 잔류응력의 계산 (Calculation of residual stresses by inherent strain method)

  • 장창두;서승일
    • Journal of Welding and Joining
    • /
    • 제7권1호
    • /
    • pp.36-41
    • /
    • 1989
  • Among various calculation methods for residual stresses, inherent strain method can be useful one for its simplicity. In comparison with finite element method, it is more economical and efficient. First, inherent strain is assumed, and then incompatibility can be calculated from this inherent strain. Based on collocation method, incompatibility equation is solved assuming stress functions which satisfies boundary conditions. Assumed inherent strain can be determined through iterations on the condition that longitudinal residual stress in centerline is yield stress and transverse distortion is the same as predicted one from other method. Calculated results according to this analytic method yield good agreement with experimental ones.

  • PDF

Molecular Modeling of Bisphenol-A Polycarbonate and Tetramethyl Bisphenol-A Polycarbonate

  • Kim, Sangil;Juwhan Liu
    • Macromolecular Research
    • /
    • 제9권3호
    • /
    • pp.129-142
    • /
    • 2001
  • To efficiently demonstrate the molecular motion, physical properties, and mechanical properties of polycarbonates, we studied the differences between bisphenol-A polycarbonate(BPA-PC) and tetramethyl bisphenol-A-polycarbonate(TMBPA-PC) using molecular modeling techniques. To investigate the conformations of BPA-PC and TMBPA-PC and the effect of the conformation on mechanical properties, we performed conformational energy calculation, molecular dynamics calculation, and stress-strain curves based on molecular mechanics method. From the result obtained from conformational energy calculations of each segment, the molecular motions of the carbonate and the phenylene group in BPA-PC were seen to be more vigorous and have lower restriction to mobility than those in TMBPA-PC, respectively. In addition, from the results of radial distribution function, velocity autocorrelation function, and power spectrum, BPA-PC appeared to have higher diffusion constant than TMBPA-PC and is easier to have various conformations because of the less severe restrictions in molecular motion. The result of stress-strain calculation for TMBPA-PC seemed to be in accordance with the experimental value of strain-to-failure ∼4%. From these results of conformational energy calculations of segments, molecular dynamics, and mechanical properties, it can be concluded that TMBPA-PC has higher modulus and brittleness than BPA-PC because the former has no efficient relaxation mode against the external deformations.

  • PDF

복합재 케이스의 실린더 변형률을 이용한 킥모터 연소 압력 계산 (Combustion Pressure Calculation of Kick Motor using Stain on Cylinder Section of Composite Case)

  • 이무근;길경섭;이경원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.777-780
    • /
    • 2010
  • 실린더 중앙 원주방향 변형률을 바탕으로 킥모터의 연소 압력을 계산하는 방법을 제안하였다. 지상연소시험으로부터 연소시간 동안의 변형률-압력 비(strain ratio)를 근사하는 다항식을 계산하였다. 이 다항식에 비행 중 측정한 변형률을 대입하여 비행 중 연소압력으로 변환하였다. 실제 비행 중에 측정한 압력과 비교한 결과 전체적인 변화 양상이 일치함을 확인하였으며 최대 약 10psi 수준의 차이가 나타난 것을 볼 수 있었다.

  • PDF

해석법 차이에 의한 프리스트레스트 콘크리트 보부재의 잔류변형률 비교 (Comparison of Residual Strain of Prestressed Concrete Beam Member by Different Analysis Method)

  • 이덕기
    • 한국지진공학회논문집
    • /
    • 제21권4호
    • /
    • pp.189-195
    • /
    • 2017
  • In the seismic design of building structural members, due to the complexity of the placement of PC steels in prestressed concrete members, it is necessary to review and define the definition of member damage in comparison with reinforced concrete members. In this study, the results of past experiments compared with the calculation results by 'section Analysis Method', with the aim of reviewing the precision of calculation results when member damage evaluation is performed using the section analysis method. Furthermore, it is also compared with the calculation results by the 'split Element Method'. In addition, parametric studies were carried out, and the influence of the difference between the amount of PC steels and reinforced bar on the residual strain was examined.

지각변동 파라메터의 정밀계산을 위한 2차원 필터링 기법의 적용 (Application of Two Dimensional Filtering Technique for the Precision Calculation of Crustal Deformation Parameters)

  • 윤홍식
    • 한국측량학회지
    • /
    • 제18권1호
    • /
    • pp.75-83
    • /
    • 2000
  • 본 논문에서는 신ㆍ구 측지기준점 측량성과를 이용하여 지진활동과 지각운동에 의한 우리나라의 일반적인 변형의 패턴을 조사하기 위한 것으로서 2차원 필터링기법을 적용하여 변형 파라메터들을 계산하였다. 2차원 필터링을 적용하여 계산된 변형 파라메터들중에서도 측량오차를 고려하여 최대전단 변형률과 주응력의 방향만을 고려한 결과로는 최대전단변형률의 평균속도는 $0.12{\mu}/yr$, 주응력 방향은 $N80^{\circ}E$로 나타났다.

  • PDF

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

Ti-10V-2Fe-3Al 합금의 응력-변형거동 계산 (The calculation of stress-strain behavior of Ti-10V-2Fe-3Al alloys)

  • 오택열
    • 오토저널
    • /
    • 제11권6호
    • /
    • pp.38-47
    • /
    • 1989
  • The Finite Element Method has been employed to calculate the effect of particle size, matrix, and volume fractions on the stress-strain relations of .alpha.-.betha. titanium alloys. It was found that for a given volume fraction, the calculated stress-strain curve was higher for a finer particle size than for a coarse particle size within the range of the strains considered, and this behavior was seen for all the different volume fraction alloys considered. The calculated stress-strain curves for three vol. pct .alpha. alloys were compared with their corresponding experimental curve, and in general, good agreement was found.

  • PDF

Welding deformation analysis based on improved equivalent strain method considering the effect of temperature gradients

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.157-173
    • /
    • 2015
  • In the present study, the existing equivalent stain method is improved to make up for its weaknesses. The improved inherent strain model is built considering more sophisticated three dimensional constraints which are embodied by six cubic elements attached on three sides of a core cubic element. From a few case studies, it is found that the inherent strain is mainly affected by the changes in restraints induced by changes of temperature-dependent material properties of the restraining elements. On the other hand, the degree of restraints is identified to be little influential to the inherent strain. Thus, the effect of temperature gradients over plate thickness and plate transverse direction normal to welding is reflected in the calculation of the inherent strain chart. The welding deformation can be calculated by an elastic FE analysis using the inherent strain values taken from the inherent strain chart.

반목하중으로 인한 지반의 변형 예측 (Approximate Prediction of Soil Deformation Caused by Repeated Loading)

  • 도덕현
    • 한국농공학회지
    • /
    • 제30권3호
    • /
    • pp.69-81
    • /
    • 1988
  • The Repeated Load Triaxial and Oedometer Tests to the weathered granite & silty clay soil have been fulfilled to investigate their dynarnic characteristics. The results obtained are summarized as follows ; 1. In the relation between the repeated triaxial compression and the oedometer test, the recoverable strain of weathered granite soil showed a tendency to decrease by the increase of the repeated loads number(N), and that of silty clay showed approximately constant values while the total strain increased continuously. 2. The changes of plastic strain was dependent to the level of deviator stress which is the most important element in the calculation of soil deformation under repeated load condition. And there was a significance of 10% between the level of stress and plastic strain. 3. When the soil was aimost dried or saturated to 100%, the deformation by the repeated loads was small. However the deformation showed peak around the saturation of 50%. 4. When the deformation was predicted by the repeated triaxial load tests of a laboratory, it is desirable to introduce the threshold stress concept in the calculation of deformation of subgrade of the pavement. 5. The improved design equation (Eq. 16) introducing the modulus of conversion(Fo), which is based on the Boussineq' s theory, is considered to be rational in the design of flexible pavement. From the above results, the deformation to the repeated traffic loads could be predicted by the repeated triaxial tests on the pavement materials or undisturbed soil layers, therefore it is think that the durable and econornic pavement could be constructed by reflecting that to the design.

  • PDF

IV족 천이금속 질화물과 bcc Fe간 계면 에너지의 제일원리 연구 (A First Principles Calculation of the Coherent Interface Energies between Group IV Transition Metal Nitrides and bcc Iron)

  • 정순효;정우상;변지영
    • 한국재료학회지
    • /
    • 제16권8호
    • /
    • pp.473-478
    • /
    • 2006
  • The coherent interface energies and misfit strain energies of Fe/XN (X=Ti, Zr, Hf) systems were calculated by first principles method. The interface energies in Fe/TiN, Fe/ZrN and Fe/HfN systems were 0.343, 0.114, and 0.030 $J/m^2$, respectively. Influence of bond energy was estimated using the discrete lattice plane/nearest neighbor broken bond(DLP/NNBB) model. It was found that the dependence of interface energy on the type of nitride was closely related to changes of the bond energies between Fe, X and N atoms before and after formation of the Fe/XN interfaces. The misfit strain energies in Fe/TiN, Fe/ZrN, and Fe/HfN systems were 0.239, 1.229, and 0.955 eV per 16 atoms(Fe; 8 atoms and XN; 8 atoms). More misfit strain energy was generated as the difference of lattice parameters between the bulk Fe and the bulk XNs increased.