• Title/Summary/Keyword: Strain calculation

Search Result 353, Processing Time 0.026 seconds

A Numerical Technique for Predicting Deformation due to Neutron Irradiation for Integrity Assessment of Research Reactors (연구용 원자로의 건전성 평가를 위한 수치해석적 중성자 조사 재료변형 예측기법 개발)

  • Jun-Geun Park;Tae-Hyeon Seok;Nam-Su Huh
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Research reactors are operated under ambient temperature and atmospheric pressure, which is much less severe conditions compared to those in typical nuclear power plants. Due to the high temperature, heat resistant materials such as austenite stainless steel should be used for the reactors in typical nuclear power plants. Whereas, as the effect of temperature is low for research reactors, materials with high resistance to neutron irradiation, such as zircaloy and beryllium, are used. Therefore, these conditions should be considered when performing integrity assessment for research reactors. In this study, a computational technique through finite element (FE) analysis was developed considering the operating conditions and materials of research reactor when conducting integrity assessment. Neutron irradiation analysis techniques using thermal expansion analysis were proposed to consider neutron irradiation growth and swelling in zirconium alloys and beryllium. A user subroutine program that can calculate the strain rate induced by neutron irradiation creep was developed for use in the commercial analysis program Abaqus. To validate the proposed technique and the user subroutine, FE analysis results were compared with hand-calculation results, and showed good agreement. Consequently, developed technique and user subroutine are suitable for evaluating structural integrity of research reactors.

First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride (Gd 도핑된 비스무스 텔루라이드의 자기적 성질에 대한 제일원리 계산 연구)

  • Van Quang, Tran;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.

Development of mcyB-specific Ultra-Rapid Real-time PCR for Quantitative Detection of Microcystis aeruginosa (Microcystis aeruginosa의 정량을 위한 mcyB 특이 초고속 실시간 유전자 증폭법의 개발)

  • Jung, Hyunchul;Yim, Byoungcheol;Lim, Sujin;Kim, Byounghee;Yoon, Byoungsu;Lee, Okmin
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.46-56
    • /
    • 2018
  • A mcyB-specific Ultra-Rapid quantitative PCR was developed for the quantitative detection of Microcystis aeruginosa, which is often a dominant species in green tide. McyB-specific UR-qPCR was optimized under extremely short times of each step in thermal cycles, based on the specific primers deduced from the mcyB in microcystin synthetase of M. aeruginosa. The M. aeruginosa strain KG07 was used as a standard for quantification, after the microscopic counting and calculation by mcyB-specific UR-qPCR. The water samples from the river water with the Microcystis outbreak were also measured by using both methods. The $1.0{\times}10^8$ molecules of mcyB-specific DNA was recognized inner 4 minutes after beginning of UR-qPCR, while $1.0{\times}10^4$ molecules of mcyB-specific templates was detected inner 7 minutes with quantitative manner. From the range of $1.0{\times}10^2$ to $1.0{\times}10^8$ initial molecules, quantification was well established based on $C_T$ using mcyB-specific UR-qPCR (Regression coefficiency, $R^2=0.9977$). Between the numbers of M. aeruginosa cell counting under microscope and calculated numbers using mcyB-specific UR-qPCR, some differences were often found. The reasons for these differences were discussed; therefore, easy compensation method was proposed that was dependent on the numbers of the cell counting. Additionally, to easily extract the genomic DNA (gDNA) from the samples, a freeze-fracturing of water-sample using liquid nitrogen was tested, by excluding the conventional gDNA extraction method. It was also verified that there were no significant differences using the UR-qPCR with both gDNAs. In conclusion, the mcyB-specific UR-qPCR that we proposed would be expected to be a useful tool for rapid quantification and easy monitoring of M. aeruginosa in environmental water.

Flexural Strength and Deflection Evaluation for FRP Bar Reinforced HSC Beams with Different Types of Reinforcing Bar and Fiber (이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 강도 및 처짐 평가)

  • Yang, Jun-Mo;Yoo, Doo-Yeol;Shin, Hyun-Oh;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.413-420
    • /
    • 2011
  • The test results of high-strength concrete beam specimens, which have various combinations of different types of flexural reinforcement and short fibers, were compared with the prediction results of codes, guidelines and models proposed by researchers. The theoretical calculation based on the ultimate strength method of the KCI and ACI Code underestimated the ultimate moments of FRP bar-reinforced beams without fibers. The models proposed by ACI 544.4R and Campione predicted the ultimate moment capacities inaccurately for the FRP bar-reinforced beam with steel fibers, because these models do not consider the increased ultimate compressive strain of fiber reinforced concrete. Bischoff's deflection model predicted the service load deflections reasonably well, while the deflection model of ACI Committee 440 underestimated the deflection of FRP bar-reinforced beams. Because the ACI 440 expression, used to predict member deflection, cannot directly apply to the beams reinforced with different types of reinforcing bars, an alternative method to estimate the deflections of beams with different types of reinforcing bars using the ACI 440 expression was proposed. In addition, Bischoff's approach for computing deflection was extended to include deflection after yielding of the steel reinforcement in the beams reinforced with steel and FRP bars simultaneously.

Radiation Effects on the Ignition and Flame Extinction of High-temperature Fuel (고온연료의 점화 및 화염 소화특성에 미치는 복사효과)

  • Kim, Yu Jeong;Oh, Chang Bo;Choi, Byung Il;Han, Yong Shik
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.50-56
    • /
    • 2013
  • The radiation effects on the auto-ignition and extinction characteristics of a non-premixed fuel-air counterflow field were numerically investigated. A detailed reaction mechanism of GRI-v3.0 was used for the calculation of chemical reactions and the optically-thin radiation model was adopted in the simulations. The flame-controlling continuation method was also used in the simulation to predict the auto-ignition point and extinction limits precisely. As a result, it was found that the maximum H radical concentration, $(Y_H)_{max}$, rather than the maximum temperature was suitable to understand the ignition and extinction behaviors. S-, C- and O-curves, which were well known from the previous theory, were identified by investigating the $(Y_H)_{max}$. The radiative heat loss fraction ($f_r$) and spatially-integrated heat release rate (IHRR) were introduced to grasp each extinction mechanism. It was also found that the $f_r$ was the highest at the radiative extinction limit. At the flame stretch extinction limit, the flame was extinguished due to the conductive heat loss which attributed to the high strain rate although the heat release rate was the highest. The radiation affected on the radiative extinction limit and auto-ignition point considerably, however the effect on the flame stretch extinction limit was negligible. A stable flame regime defined by the region between each extinction limit became wide with increasing the fuel temperature.

A numerical study on pull-out behaviour of cavern-type rock anchorages (수치해석에 의한 암반상의 지중정착식 앵커리지 인발 거동 연구)

  • Hong, Eun-Soo;Cho, Gye-Chun;Baak, Seng Hyoung;Park, Jae-Hyun;Chung, Moonkyung;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.521-531
    • /
    • 2014
  • This paper is a study for behaviour of cavern type anchorage tunnels for suspension bridges with cable tension. Anchorage behaviour, design method for anchorage, and failure surface angle, ${\delta}$ are analyzed by comparing numerical analysis results and ultimate pullout capacities($P_u$) using bilinear corelation equation. Results show that design depths for cavern type anchorage tunnels are easily checked with linear relationships for $P/{\gamma}/H$ vs. displacement and $P_u/{\gamma}/H$ vs. H/b. The analysis results of maximum shear strain distribution and plastic status show that failure shapes are closer to circular arc model than soil cone model which frequently used. To an easy calculation of the ultimate pullout capacity, we propose a simple bilinear failure model in this study. The calculated ultimate pullout capacities from the proposed bilinear corelation equation using two failure angles results are similar to the ultimate pullout capacities from numerical analysis.

Reflection Signal Analysis for Time Division Multiplexing of Fiber Optic FBG Sensors (광섬유 FBG 센서의 시간 분할 다중화를 위한 반사 신호의 분석)

  • Kim, Geun-Jin;Kwon, Il-Bum;Yoon, Dong-Jin;Hwang, Du-Sun;Chung, Young-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.6-12
    • /
    • 2010
  • Fiber optic sensor using fiber Bragg grating(FBG) probes is used for monitoring strain and temperature distributed on the wide surfaces of large structures. In this paper, in order to use many FBG probes in one optical fiber line, we propose a complex multiplexing technology which is composed of two techniques, one is time division multiplexing and another is wavelength division multiplexing. However, we only investigate the characteristics of time division multiplexing because FBG sensors basically can be operated by wavelength division multiplexing. We calculate the optimal reflectivities and the lengthwise location of five FBG probes in serial connection in order to obtain the unique reflected intensities from the FBG probes. We fabricate five FBG probes with the reflectivities of 13%, 16%, 25%, 40% and 80%, which are determined by the theoretical calculation, and observe the signal reflected from each FBG in the time domain from the experiment. There are differences between experimental and theoretical results caused by the signal noise and the differences of reflectivities of FBG probes. But the experimental results shows the reflected signals of five FBG probes which prove the availability of complex multiplexing.

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Dynamic Factor of Safety Calculation of Slope by Nonlinear Response History Analysis (비선형 응답이력해석을 통한 사면의 동적 안전계수 계산)

  • Lee, Yonghee;Kim, Hak-Sung;Ju, Young-Tae;Kim, Daehyeon;Park, Heon-Joon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.5-12
    • /
    • 2021
  • Pseudo-static slope stability analysis method is widely used in engineering practice to calculate the seismic factor of safety of slope subjected to earthquake ground motions. Although the dynamic analysis method is well recognized to have the primary advantage of simulating the stress-strain response of soils, it is not often used in practice because of the difficult in estimating the factor of safety. In this study, a procedure which utilizes the dynamic analysis method to extract the transient dynamic factor of safety is devleoped. This method overcomes the major limitation of the pseudo-static method, which uses an empirically determined seismic coefficient to derive the factor of safety. The proposed method is applied to a slope model and the result is compared with that of the pseudo-static method. It is shown that minimum dynamic factor of safety calculated by the dynamic analysis is slightly larger than that determined from the pseudo-static method. It is also demonstrated that the dynamic factor of safety becomes minimum when the horizontal seismic coefficient and horizontal average acceleration are maximum.

The Calculation Method of Cell Count for the Bloom-forming (Green tide) Cyanobacterium using Correlation between Colony Area and Cell Number in Korea (군체 크기와 세포수 상관관계를 이용한 녹조 유발 남조류의 세포수 산정 방법)

  • You, Kyung-A;Song, Mi-Ae;Byeon, Myeong-Seop;Lee, Hae-Jin;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.350-357
    • /
    • 2014
  • Harmful Algal Bloom Alert System (HABAS) for drinking water supply is require to fast and accurate count as system monitoring of cyanobacterium occurrence and inducing a response action. We measured correlation between colony size and cell number including genus Anabaena, Aphanizomenon, Microcystis, Oscillatoria which are targeted at HABAS, deducted from standard formula, and suggested calculation method from colony size to the number of cell. We collected cyanobacteria samples at Han River (Paldang reservoir), Nakdong River (Dalseong weir, Changnyeonghaman weir) and Geum River (Gobok reservoir) from August to October, 2013. Also, we studied correlation between colony size and cell number, and calculated regression equation. As a result of correlation of harmful cyanobacteria by genus, Anabaena spp. and Aphanizomenon spp. having trichome showed high correlation coefficients more than 0.93 and Microcystis spp. having colony showed correlation coefficient of 0.76. As a result of correlation of harmful cyanobacteria by species, Anabaena crassa, Aphanizomenon flos-aquae, A. issatschenkoi, Oscillatoria curviceps, O. mougeotii having trichome showed high correlation coefficients from 0.89 to 0.96, and Microcystis aeruginosa, M. wessenbergii, M. viridis having colony showed correlation coefficients from 0.76 to 0.88. Compared with other genus Microcystis relatively showed low correlation because even species and colony size are the same, cell density and cell size are different from Microcystis strains. In this study, using calculated regression might be fast and simple method of cell counting. From now on, we need to secure additional samples, and make a decision to study about other species.